Skip to main content

Confocal Microscopy: Theory and Applications for Cellular Signaling

  • Protocol
  • First Online:
Calcium Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 937))

  • 2761 Accesses

Abstract

The development of confocal microscopy and the commercial availability of confocal microscopes have provided many laboratories with an extremely powerful approach to examine cellular structure and function. Allied with the development of suitable tools, it is now possible to interrogate a wide range of structural and functional aspects on both fixed and live cells. Here we describe the basic principles underlying confocal microscopy and provide methodological accounts of how it can be used to study aspects related particularly (but not exclusively) to the expression, activation, and regulation of signaling by G-protein-coupled receptors. Specifically we provide detailed protocols for examining: the cellular expression and distribution of proteins by immunocytochemistry; cytoplasmic and organelle Ca2+ signaling using fluorescent indicators; second messenger generation using fluorescently tagged biosensors; and ligand/receptor internalization using fluorescently tagged peptide agonists and receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheppard CJR, Shotton DM (1997) Confocal laser scanning microscopy. BIOS Scientific Publishers Limited, Oxford, UK

    Google Scholar 

  2. Sheppard CJR (1999) Confocal microscopy – principles, practice and options. In: Mason WT (ed) Fluorescent and luminescent probes for biological activity. Academic, London, UK, pp 303–309

    Chapter  Google Scholar 

  3. Lipp P, Bootman MD (1999) High resolution confocal imaging of elementary calcium signals in living cells. In: Mason WT (ed) Fluorescent and luminescent probes for biological activity. Academic, London, UK, pp 337–343

    Chapter  Google Scholar 

  4. Berridge MJ (1997) Elementary and global aspects of calcium signaling. J Physiol 499:291–306

    PubMed  CAS  Google Scholar 

  5. Bootman MD, Berridge MJ, Lipp P (1997) Cooking with calcium; the recipes for composing global signals from elementary events. Cell 91:367–373

    Article  PubMed  CAS  Google Scholar 

  6. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    Article  PubMed  CAS  Google Scholar 

  7. Kirchhefer U, Hanske G, Jones LR, Justus I, Kaestner L, Lipp P, Schmitz W, Neumann J (2006) Overexpression of junction causes adaptive changes in cardiac myocyte Ca2+ signaling. Cell Calcium 39:131–142

    Article  PubMed  CAS  Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  9. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  10. Lipp P, Niggli E (1993) Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14:359–372

    Article  PubMed  CAS  Google Scholar 

  11. Lohr C (2003) Monitoring neuronal calcium signalling using a new method for ratiometric confocal calcium imaging. Cell Calcium 34:295–303

    Article  PubMed  CAS  Google Scholar 

  12. Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL, Schwickert T, Nussenzweig MC, Dustin ML (2007) Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 8:835–844

    Article  PubMed  CAS  Google Scholar 

  13. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  14. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  PubMed  CAS  Google Scholar 

  15. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28:213–223

    Article  PubMed  CAS  Google Scholar 

  16. Bolsover S, Ibrahim O, O’luanaigh N, Williams H, Cockcroft S (2001) Use of fluorescent Ca2+ dyes with green fluorescent protein and its variants: problems and solutions. Biochem J 356:345–352

    Article  PubMed  CAS  Google Scholar 

  17. Tovey SC, Sun Y, Taylor CW (2006) Rapid functional assays of intracellular Ca2+ channels. Nat Protoc 1:259–263

    Article  PubMed  CAS  Google Scholar 

  18. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  19. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Mol Cell Biol 4:579–586

    Article  CAS  Google Scholar 

  20. Pozzan T, Mongillo M, Rudolf R (2003) Investigating signal transduction with genetically encoded fluorescent probes. Eur J Biochem 270:2343–2352

    Article  PubMed  CAS  Google Scholar 

  21. Miyawaki A, Llopis J, Heim R, McCaffrey JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  22. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    Article  PubMed  CAS  Google Scholar 

  23. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  24. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  25. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246

    Article  PubMed  CAS  Google Scholar 

  26. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein – mechanism and applications. J Biol Chem 276:29188–29294

    Article  PubMed  CAS  Google Scholar 

  27. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202

    Article  PubMed  CAS  Google Scholar 

  28. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotech 19:137–141

    Article  CAS  Google Scholar 

  29. Ohkura M, Matsuzaki M, Kasai H, Imoto K, Nakai J (2005) Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77:5861–5869

    Article  PubMed  CAS  Google Scholar 

  30. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  31. Souslova EA, Belousov VV, Lock JG, Stromblad S, Kasparov S, Bolshakov AP, Pinelis VG, Labas Y, Lukyanov S, Mayr LM, Chudakov DM (2007) Single fluorescent protein-based Ca2+ sensors with increased dynamic range. BMC Biotechnol 7:37

    Article  PubMed  Google Scholar 

  32. Zou J, Hofer AM, Lurtz MM, Gadda G, Ellis AL, Chen N, Huang Y, Holder A, Ye Y, Louis CF, Welshhans K, Rehder V, Yang JJ (2007) Developing sensors for real-time measurement of high Ca2+ concentrations. Biochemistry 46:12275–12288

    Article  PubMed  CAS  Google Scholar 

  33. McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46:152–159

    Article  PubMed  CAS  Google Scholar 

  34. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274

    Article  PubMed  CAS  Google Scholar 

  35. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7:390–396

    Article  PubMed  CAS  Google Scholar 

  36. Arnaudeau S, Kelley WL, Jr Walsh JV, Demaurex N (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighbouring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    Article  PubMed  CAS  Google Scholar 

  37. Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234

    Article  PubMed  CAS  Google Scholar 

  38. Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI, Seward EP, Rutter GA (1999) Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol 9:915–918

    Article  PubMed  CAS  Google Scholar 

  39. Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem 279:14280–14286

    Article  PubMed  CAS  Google Scholar 

  40. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559

    Article  PubMed  CAS  Google Scholar 

  41. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  PubMed  CAS  Google Scholar 

  42. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behaviour with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    Article  PubMed  Google Scholar 

  43. Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M, Duebel J, Waters J, Bujard H, Griesbeck O, Tsien RY, Nagai T, Miyawaki A, Denk W (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:763–775

    Article  CAS  Google Scholar 

  44. Ji G, Feldman ME, Deng KY, Greene KS, Wilson J, Lee JC, Johnston RC, Rishniw M, Tallini Y, Zhang J, Wier WG, Blaustein MP, Xin HB, Nakai J, Kotlikoff MI (2004) Ca2+-sensing transgenic mice – postsynaptic signaling in smooth muscle. J Biol Chem 279:21461–21468

    Article  PubMed  CAS  Google Scholar 

  45. Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A (2004) Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–3571

    Article  PubMed  CAS  Google Scholar 

  46. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594

    Article  PubMed  CAS  Google Scholar 

  47. Reiff DF, Thiel PR, Schuster CM (2002) Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J Neurosci 22:9399–9409

    PubMed  CAS  Google Scholar 

  48. Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud J-M, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  49. Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  PubMed  CAS  Google Scholar 

  50. Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  PubMed  CAS  Google Scholar 

  51. Young KW, Bampton ETW, Pinon L, Bano D, Nicotera P (2008) Mitochondrial Ca2+ signalling in hippocampal neurons. Cell Calcium 43:296–306

    Article  PubMed  CAS  Google Scholar 

  52. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J Biol Chem 281:8917–8926

    Article  PubMed  CAS  Google Scholar 

  53. Li IT, Pham E, Truong K (2006) Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 28:1971–1982

    Article  PubMed  CAS  Google Scholar 

  54. Stauffer TP, Ahn S, Meyer T (1998) Receptor induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  55. Oancea E, Teruel MN, Quest AFG, Meyer T (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signalling in living cells. J Cell Biol 140:485–498

    Article  PubMed  CAS  Google Scholar 

  56. Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR (2001) Single cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J 356:137–142

    Article  PubMed  CAS  Google Scholar 

  57. Nahorski SR, Young KW, Challiss RAJ, Nash MS (2003) Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci 26:444–452

    Article  PubMed  CAS  Google Scholar 

  58. Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–318

    Article  PubMed  CAS  Google Scholar 

  59. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem 279:38095–38098

    Article  PubMed  CAS  Google Scholar 

  60. Sato M, Ueda Y, Shibuya M, Umezawa Y (2005) Locating inositol 1,4,5-trisphosphate in the nucleus and neuronal dendrites with genetically encoded fluorescent indicators. Anal Chem 77:4751–4758

    Article  PubMed  CAS  Google Scholar 

  61. Remus TP, Zima AV, Bossuyt J, Bare DJ, Martin JL, Blatter LA, Bers DM, Mignery GA (2006) Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem 281:608–616

    Article  PubMed  CAS  Google Scholar 

  62. Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K (2006) Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol 173:755–765

    Article  PubMed  CAS  Google Scholar 

  63. Varnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274:10983–10989

    Article  PubMed  CAS  Google Scholar 

  64. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed  CAS  Google Scholar 

  65. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signalling within discrete subcellular compartments. Proc Natl Acad Sci USA 101:16513–16518

    Article  PubMed  CAS  Google Scholar 

  66. Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98:2437–2442

    Article  PubMed  CAS  Google Scholar 

  67. Kallal L, Benovic JL (2000) Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol Sci 21:175–180

    Article  PubMed  CAS  Google Scholar 

  68. Milligan G (2003) High-content assays for ligand regulation of G-protein-coupled receptors. Drug Discov Today 8:579–585

    Article  PubMed  CAS  Google Scholar 

  69. Koenig JA, Kaur R, Dodgeon L, Edwardson JM, Humphrey PPA (1998) Fates of endocytosed somatostatin sst2 receptors and associated agonist. Biochem J 336:291–298

    PubMed  CAS  Google Scholar 

  70. Daly CJ, McGrath JC (2003) Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol Ther 100:101–118

    Article  PubMed  CAS  Google Scholar 

  71. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol (Suppl.): S1–S7

    Google Scholar 

  72. Awaji T, Hirasawa A, Kataoka M, Shinoura H, Nakayama Y, Sugawara T, Izumi S, Tsujimoto G (1998) Real-time optical monitoring of ligand-mediated internalization of α(1b)-adrenoceptor with green fluorescent protein. Mol Endocrinol 12:1099–1111

    Article  PubMed  CAS  Google Scholar 

  73. Go WY, Roettger BF, Holicky EL, Hadac EM, Miller LJ (1997) Quantitative dynamic multicompartmental analysis of cholecystokinin receptor movement in a living cell using dual fluorophores and reconstruction of confocal images. Anal Biochem 247:210–215

    Article  PubMed  CAS  Google Scholar 

  74. Maamra M, Finidori J, Von Laue S, Simon S, Justice S, Webster J, Dower S, Ross R (1999) Studies with a growth hormone antagonist and dual-fluorescent confocal microscopy demonstrate that the full-length human growth hormone receptor, but not the truncated isoform, is very rapidly internalized independent of Jak2-Stat5 signaling. J Biol Chem 274:14791–14798

    Article  PubMed  CAS  Google Scholar 

  75. Sneddon WB, Syme CA, Bisello A, Magyar CE, Rochdi MD, Parent J-L, Weinman EJ, Abou-Samra AB, Friedman PA (2003) Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J Biol Chem 278:43787–43796

    Article  PubMed  CAS  Google Scholar 

  76. Böhme I, Beck-Sickinger AG (2009) Illuminating the life of GPCRs. Cell Commun Signal 7:16

    Article  PubMed  Google Scholar 

  77. Huang Y, Wilkinson GF, Willars GB (2010) Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor. Br J Pharmacol 159:237–251

    Article  PubMed  CAS  Google Scholar 

  78. Harlow E, Lane D (1988) Antibodies – a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  79. Mongan LC, Grubb BD (2004) Immunocytochemical identification of G-protein-coupled receptor expression and localization. In: Willars GB, Challiss RAJ (eds) Methods in molecular biology, vol 259, 2nd edn, Receptor signal transduction protocols. Humana, Totowa, NJ

    Google Scholar 

  80. Kao JPY (1994) Practical aspects of measuring [Ca2+] with fluorescent indicators. In: Nuccitelli R (ed) A practical guide to the study of calcium in living cells. Academic, San Diego, CA, pp 155–180

    Chapter  Google Scholar 

  81. Bader JE, Beck-Sickinger AG (2004) Fluorescence resonance energy transfer to study receptor dimerization in living cells. In: Willars GB, Challiss RAJ (eds) Methods in molecular biology, vol 259, 2nd edn, Receptor signal transduction protocols. Humana, Totowa, NJ

    Google Scholar 

  82. Di Virgilio F, Steinberg TH, Silverstein SC (1990) Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11:57–62

    Article  PubMed  Google Scholar 

  83. Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD (2001) Calcium puffs are generic InsP3-activated elementary calcium signals and are down-regulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 114:3979–3989

    PubMed  CAS  Google Scholar 

  84. Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, Li WH, Lipp P (2002) The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 541:395–409

    Article  PubMed  CAS  Google Scholar 

  85. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Wellcome Trust (grant 061050), BBSRC (Biotechnology and Biological Sciences Research Council; grants 91/C15897 and 01/A4/C/07909), GlaxoSmithKline, and the Medical Research Council (MRC) are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Tovey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tovey, S.C., Brighton, P.J., Bampton, E.T.W., Huang, Y., Willars, G.B. (2013). Confocal Microscopy: Theory and Applications for Cellular Signaling. In: Lambert, D., Rainbow, R. (eds) Calcium Signaling Protocols. Methods in Molecular Biology, vol 937. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-086-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-086-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-085-4

  • Online ISBN: 978-1-62703-086-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics