Skip to main content

Measurement of Glucose Homeostasis In Vivo: Combination of Tracers and Clamp Techniques

  • Protocol
  • First Online:
Animal Models in Diabetes Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

A tracer technique referred to as “pancreatic-blood glucose clamp” allows assessment in response to a change in blood glucose, insulin, and/or glucagon of whole body glucose disposal, endogenous glucose production, specific tissue/organ glucose uptake and storage, and insulin secretion. This technique is currently considered the optimal method for measurement of insulin sensitivity and glucose effectiveness. We describe here, for use in conscious-unrestrained mice and rats, the pancreatic-blood glucose clamp technique and its associated methods; which include catheterization of blood vessels; a clamp of plasma insulin, glucagon, and glucose; analyses of metabolites and tracers; and calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ci:

Curie(s)

h:

Hours

I.D.:

Inner diameter

ip:

Intraperitoneal injection

min:

Minutes

O.D.:

Outer diameter

U:

Unit(s)

v/v:

Volume/volume

w/v:

Weight/volume

References

  1. Niswender KD, Shiota M, Postic C et al (1997) Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J Biol Chem 272:22570–22575

    Article  PubMed  CAS  Google Scholar 

  2. Postic C, Shiota M, Niswender KD et al (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315

    Article  PubMed  CAS  Google Scholar 

  3. She P, Burgess SC, Shiota M et al (2003) Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes 52:1649–1654

    Article  PubMed  CAS  Google Scholar 

  4. She P, Shiota M, Shelton KD et al (2000) Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20:6508–6517

    Article  PubMed  CAS  Google Scholar 

  5. Uno K, Katagiri H, Yamada T et al (2006) Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312:1656–1659

    Article  PubMed  CAS  Google Scholar 

  6. An J, Muoio DM, Shiota M et al (2004) Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 10:268–274

    Article  PubMed  CAS  Google Scholar 

  7. Chu CA, Fujimoto Y, Igawa K et al (2004) Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol 286:G627–G634

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto Y, Donahue EP, Shiota M (2004) Defect in glucokinase translocation in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 287:E414–E423

    Article  PubMed  CAS  Google Scholar 

  9. Fujimoto Y, Torres TP, Donahue EP et al (2006) Glucose toxicity is responsible for the development of impaired regulation of endogenous glucose production and hepatic glucokinase in Zucker diabetic fatty rats. Diabetes 55:2479–2490

    Article  PubMed  CAS  Google Scholar 

  10. Nagle CA, An J, Shiota M et al (2007) Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J Biol Chem 282:14807–14815

    Article  PubMed  CAS  Google Scholar 

  11. Shin JS, Torres TP, Catlin RL et al (2007) A defect in glucose-induced dissociation of glucokinase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 292:R1381–R1390

    Article  PubMed  CAS  Google Scholar 

  12. Torres TP, Catlin RL, Chan R et al (2009) Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in zucker diabetic fatty rats. Diabetes 58:78–86

    Article  PubMed  CAS  Google Scholar 

  13. Torres TP, Fujimoto Y, Donahue EP et al (2011) Defective glycogenesis contributes toward the inability to suppress hepatic glucose production in response to hyperglycemia and hyperinsulinemia in zucker diabetic fatty rats. Diabetes 60:2225–2233

    Article  PubMed  CAS  Google Scholar 

  14. Ferre P, Leturque A, Burnol AF et al (1985) A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem J 228:103–110

    PubMed  CAS  Google Scholar 

  15. Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430

    Article  PubMed  CAS  Google Scholar 

  16. Ayala JE, Samuel VT, Morton GJ et al (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3:525–534

    Article  PubMed  CAS  Google Scholar 

  17. McGuinness OP, Ayala JE, Laughlin MR et al (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297:E849–E855

    Article  PubMed  CAS  Google Scholar 

  18. Mathews CE, Wickwire K, Flatt WP et al (2000) Attenuation of circadian rhythms of food intake and respiration in aging diabetes-prone BHE/Cdb rats. Am J Physiol Regul Integr Comp Physiol 279:R230–R238

    PubMed  CAS  Google Scholar 

  19. Possidente B, Birnbaum S (1979) Circadian rhythms for food and water consumption in the mouse, Mus musculus. Physiol Behav 22:657–660

    Article  PubMed  CAS  Google Scholar 

  20. ter Haar MB (1972) Circadian and estrual rhythms in food intake in the rat. Horm Behav 3:213–219

    Article  PubMed  Google Scholar 

  21. Shiota M, Galassetti P, Monohan M et al (1998) Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes 47:867–873

    Article  PubMed  CAS  Google Scholar 

  22. Torres TP, Sasaki N, Donahue EP et al (2011) Impact of a glycogen phosphorylase inhibitor and metformin on basal and glucagon-stimulated hepatic glucose flux in conscious dogs. J Pharmacol Exp Ther 337:610–620

    Article  PubMed  CAS  Google Scholar 

  23. Galassetti P, Shiota M, Zinker BA et al (1998) A negative arterial-portal venous glucose gradient decreases skeletal muscle glucose uptake. Am J Physiol 275:E101–E111

    PubMed  CAS  Google Scholar 

  24. Pagliassotti MJ, Cherrington AD (1992) Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol 54:847–860

    Article  PubMed  CAS  Google Scholar 

  25. Argoud GM, Schade DS, Eaton RP (1987) Underestimation of hepatic glucose production by radioactive and stable tracers. Am J Physiol 252:E606–E615

    PubMed  CAS  Google Scholar 

  26. Bell PM, Firth RG, Rizza RA (1986) Assessment of insulin action in insulin-dependent diabetes mellitus using (6(14)C) glucose, (3(3)H)glucose, and (2(3)H)glucose. Differences in the apparent pattern of insulin resistance depending on the isotope used. J Clin Invest 78:1479–1486

    Article  PubMed  CAS  Google Scholar 

  27. Colwell DR, Higgins JA, Denyer GS (1996) Incorporation of 2-deoxy-D-glucose into glycogen. Implications for measurement of tissue-specific glucose uptake and utilisation. Int J Biochem Cell Biol 28:115–121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I deeply thank Dr. Richard L. Printz, Ph.D., (Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A.) for his assistance in preparation of this Chapter and Mr. Dominic Doyle, M.A., (Creative Services, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.) for his assistance with illustrations for ures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Shiota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shiota, M. (2012). Measurement of Glucose Homeostasis In Vivo: Combination of Tracers and Clamp Techniques. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics