Skip to main content

Determination of Beta-Cell Function: Insulin Secretion of Isolated Islets

  • Protocol
  • First Online:
Animal Models in Diabetes Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

The kinetics of insulin secretion, not just the total amount, is of decisive relevance for the physiological regulation of glucose homeostasis. Thus to characterize the relevant features of the secretory response to an insulinotropic stimulus a method is needed which is able to resolve the temporal response pattern, in particular to distinguish the first phase from the second phase response. The perifusion of collagenase-isolated islets is a method which permits to register responses of near-physiological complexity with a preparation that can also be used for cell physiological and biochemical investigations on stimulus-­secretion oupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain R, Lammert E (2009) Cell-cell interactions in the endocrine pancreas. Diabetes Obes Metab 11(Suppl 4):159–167

    Article  PubMed  CAS  Google Scholar 

  2. Unger RH, Orci L (2010) Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci U S A 107:16009–16012

    Article  PubMed  CAS  Google Scholar 

  3. Hamid M et al (2002) Comparison of the secretory properties of four insulin-secreting cell lines. Endocr Res 28:35–47

    Article  PubMed  CAS  Google Scholar 

  4. Hellman B (1965) Studies in obese-hyperglycemic mice. Ann NY Acad Sci 131:541–558

    Article  PubMed  CAS  Google Scholar 

  5. Lenzen S (1979) Insulin secretion by isolated perfused rat and mouse pancreas. Am J Physiol 236:E391–E400

    PubMed  CAS  Google Scholar 

  6. Nesher R, Cerasi E (2002) Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 51(Suppl 1):S53–S59

    Article  PubMed  CAS  Google Scholar 

  7. Moskalewski S (1965) Isolation and culture of the islets of Langerhans of the guinea pig. Gen Comp Endocrinol 44:342–353

    Article  PubMed  CAS  Google Scholar 

  8. Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39

    PubMed  CAS  Google Scholar 

  9. Hellerström C (1994) Pancreatic B-cell research: origins, developments and future prospects. In: Flatt P, Lenzen S (eds) Frontiers of insulin secretion and pancreatic B-cell research. Smith-Gordon, London, pp 1–6

    Google Scholar 

  10. Panten U et al (1977) A versatile microperifusion system. Anal Biochem 82:317–326

    Article  PubMed  CAS  Google Scholar 

  11. Miyazaki J et al (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  PubMed  CAS  Google Scholar 

  12. Hauge-Evans A et al (1999) Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. Diabetes 48:1402–1408

    Article  PubMed  CAS  Google Scholar 

  13. Aizawa T et al (2001) Size-related and size-unrelated functional heterogeneity among pancreatic islets. Life Sci 69:2627–2639

    Article  PubMed  CAS  Google Scholar 

  14. Gotoh M et al (1987) Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725–730

    Article  PubMed  CAS  Google Scholar 

  15. Hatlapatka K, Willenborg M, Rustenbeck I (2009) Plasma membrane depolarization as a determinant of the first phase of insulin secretion. Am J Physiol Endocrinol Metab 297:E315–E322

    Article  PubMed  CAS  Google Scholar 

  16. Hatlapatka K et al (2011) Bidirectional insulin granule turnover in the submembrane space during K+ depolarization-induced secretion. Traffic 12:1166–1178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Help by Verena Lier-Glaubitz, Michael Belz, and Hany Ghaly is gratefully acknowledged. Work in the authors´ lab was supported by grants from the Deutsche Forschungsgemeinschaft (DFG Ru 368/5-1), the Deutsche Diabetes Gesellschaft, and the Deutsche Diabetes Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Rustenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willenborg, M., Schumacher, K., Rustenbeck, I. (2012). Determination of Beta-Cell Function: Insulin Secretion of Isolated Islets. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics