Skip to main content

Oats Supplementation and Alcohol-Induced Oxidative Tissue Damage

  • Chapter
  • First Online:
Alcohol, Nutrition, and Health Consequences

Abstract

Alcohol has been a widely used and abused substance throughout human civilization, with use reported as early as the Neolithic period circa 10,000 B.C.[1]. Alcohol remains a highly popular substance today with approximately 51 % of Americans over the age of 21 reporting alcohol use. Of these individuals, 11 % meet the criteria for alcohol abuse with approximately 18 million alcoholics in the United States. The consequences of alcohol abuse are numerous including liver cirrhosis, liver transplantation [2], and death occurring secondary to traffic accidents [3]. Thus, it is clear that chronic alcohol use/abuse is a significant public health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2010;51(1):307–28.

    Article  PubMed  Google Scholar 

  2. Blazer DG, Wu LT. The epidemiology of alcohol use disorders and subthreshold dependence in a middle-aged and elderly community sample. Am J Geriatr Psychiatry. 2011;19(8):685–94.

    Article  PubMed  Google Scholar 

  3. World Health Organization (W.H.O.). Global Status Report on Alcohol and Health. Geneva: World Health Organization; 2011.

    Google Scholar 

  4. Comporti M, et al. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr. 2010;5(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  5. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol. 2010;16(11):1304–13.

    Article  PubMed  CAS  Google Scholar 

  6. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003;27(4):277–84.

    PubMed  Google Scholar 

  7. Wu D, Zhai Q, Shi X. Alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol. 2006;21(Suppl 3):S26–9.

    Article  PubMed  CAS  Google Scholar 

  8. Cederbaum AI. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig Dis. 2010;28(6):802–11.

    Article  PubMed  Google Scholar 

  9. Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc. 2006;65(3):278–90.

    Article  PubMed  CAS  Google Scholar 

  10. Roberts BJ, et al. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem. 1995;270(50):29632–5.

    Article  PubMed  CAS  Google Scholar 

  11. Halliwell B. Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci. 2011;32(3):125–30.

    Article  PubMed  CAS  Google Scholar 

  12. Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol. 2004;34(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  13. McClain CJ, et al. Cytokines in alcoholic liver disease. Semin Liver Dis. 1999;19(2):205–19.

    Article  PubMed  CAS  Google Scholar 

  14. Jampana SC, Khan R. Pathogenesis of alcoholic hepatitis: role of inflammatory signaling and oxidative stress. World J Hepatol. 2011;3(5):114–7.

    Article  PubMed  Google Scholar 

  15. Ishak KG, Zimmerman HJ, Ray MB. Alcoholic liver disease: pathologic, pathogenetic and clinical aspects. Alcohol Clin Exp Res. 1991;15(1):45–66.

    Article  PubMed  CAS  Google Scholar 

  16. Tsukamoto H, et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology. 1985;5(2):224–32.

    Article  PubMed  CAS  Google Scholar 

  17. Nanji AA, French SW. Dietary factors and alcoholic cirrhosis. Alcohol Clin Exp Res. 1986;10(3):271–3.

    Article  PubMed  CAS  Google Scholar 

  18. Nanji AA, et al. Effect of type of dietary fat and ethanol on antioxidant enzyme mRNA induction in rat liver. J Lipid Res. 1995;36(4):736–44.

    PubMed  CAS  Google Scholar 

  19. Lieber CS. Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Engl J Med. 1988;319(25):1639–50.

    Article  PubMed  CAS  Google Scholar 

  20. Grant BF, Dufour MC, Harford TC. Epidemiology of alcoholic liver disease. Semin Liver Dis. 1988;8(1):12–25.

    Article  PubMed  CAS  Google Scholar 

  21. Rao RK, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G881–4.

    Article  PubMed  CAS  Google Scholar 

  22. Purohit V, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol. 2008;42(5):349–61.

    Article  PubMed  CAS  Google Scholar 

  23. Bigatello LM, et al. Endotoxemia, encephalopathy, and mortality in cirrhotic patients. Am J Gastroenterol. 1987;82(1):11–5.

    PubMed  CAS  Google Scholar 

  24. Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  25. Enomoto N, et al. Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology. 1998;115(2):443–51.

    Article  PubMed  CAS  Google Scholar 

  26. Mathurin P, et al. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology. 2000;32(5):1008–17.

    Article  PubMed  CAS  Google Scholar 

  27. Yamashina S, et al. Ethanol-induced sensitization to endotoxin in Kupffer cells is dependent upon oxidative stress. Alcohol Clin Exp Res. 2005;29(12 Suppl):246S–50.

    Article  PubMed  CAS  Google Scholar 

  28. Keshavarzian A, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol. 2009;50(3):538–47.

    Article  PubMed  CAS  Google Scholar 

  29. Ferrier L, et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168(4):1148–54.

    Article  PubMed  CAS  Google Scholar 

  30. Tang Y, et al. Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res. 2009;33(7):1220–30.

    Article  PubMed  CAS  Google Scholar 

  31. Keshavarzian A, et al. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol. 1999;94(1):200–7.

    Article  PubMed  CAS  Google Scholar 

  32. Adachi Y, et al. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology. 1995;108(1):218–24.

    Article  PubMed  CAS  Google Scholar 

  33. Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. 2009;44(2):115–27.

    PubMed  CAS  Google Scholar 

  34. Crews FT, Zou J, Qin L. Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun. 2011;25(Suppl 1):S4–12.

    Article  PubMed  CAS  Google Scholar 

  35. Enomoto N, et al. Role of Kupffer cells and gut-derived endotoxins in alcoholic liver injury. J Gastroenterol Hepatol. 2000;15(Suppl):D20–5.

    Article  PubMed  CAS  Google Scholar 

  36. Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol. 2010;16(11):1321–9.

    Article  PubMed  CAS  Google Scholar 

  37. Gao B, et al. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2011;300(4):G516–25.

    Article  PubMed  CAS  Google Scholar 

  38. Thurman RG. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol. 1998;275(4 Pt 1):G605–11.

    PubMed  CAS  Google Scholar 

  39. McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology. 1989;9(3):349–51.

    Article  PubMed  CAS  Google Scholar 

  40. Thurman RG, et al. The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury. J Gastroenterol Hepatol. 1998;13(Suppl):S39–50.

    PubMed  CAS  Google Scholar 

  41. Yin M, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology. 1999;117(4):942–52.

    Article  PubMed  CAS  Google Scholar 

  42. Naqvi A, et al. Network-based modeling of the human gut microbiome. Chem Biodivers. 2010;7(5):1040–50.

    Article  PubMed  CAS  Google Scholar 

  43. Bjarnason I, Peters TJ, Wise RJ. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet. 1984;1(8370):179–82.

    Article  PubMed  CAS  Google Scholar 

  44. Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol. 2003;17(4):575–92.

    Article  PubMed  CAS  Google Scholar 

  45. Mutlu E, et al. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res. 2009;33(10):1836–46.

    Article  PubMed  CAS  Google Scholar 

  46. Kirpich IA, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol. 2008;42(8):675–82.

    Article  PubMed  CAS  Google Scholar 

  47. Forsyth CB, et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43(2):163–72.

    Article  PubMed  CAS  Google Scholar 

  48. Frazier TH, Dibaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr. 2011. doi:10.1177/0148607111413772.

    Google Scholar 

  49. Mennigen R, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1140–9.

    Article  PubMed  CAS  Google Scholar 

  50. Ulluwishewa D, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769–76.

    Article  PubMed  CAS  Google Scholar 

  51. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 2003;52(7):988–97.

    Article  PubMed  CAS  Google Scholar 

  52. Resta-Lenert S, Barrett KE. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006;130(3):731–46.

    Article  PubMed  CAS  Google Scholar 

  53. Keshavarzian A, Fields J. Alcohol: “ice-breaker” yes, “gut barrier-breaker,” maybe. Am J Gastroenterol. 2000;95(5):1124–5.

    PubMed  CAS  Google Scholar 

  54. Farhadi A, et al. Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol. 2003;18(5):479–97.

    Article  PubMed  Google Scholar 

  55. Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2008;14(3):401–7.

    Article  PubMed  CAS  Google Scholar 

  56. Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010;3(3):247–59.

    Article  PubMed  CAS  Google Scholar 

  57. Lambert JC, et al. Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice. J Pharmacol Exp Ther. 2003;305(3):880–6.

    Article  PubMed  CAS  Google Scholar 

  58. Ma TY, et al. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol. 1999;276(4 Pt 1):G965–74.

    PubMed  CAS  Google Scholar 

  59. Zhong W, et al. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 2010;298(5):G625–33.

    Article  PubMed  CAS  Google Scholar 

  60. Banan A, et al. NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol. 2007;41(6):447–60.

    Article  PubMed  CAS  Google Scholar 

  61. Banan A, et al. Ethanol-induced barrier dysfunction and its prevention by growth factors in human intestinal monolayers: evidence for oxidative and cytoskeletal mechanisms. J Pharmacol Exp Ther. 1999;291(3):1075–85.

    PubMed  CAS  Google Scholar 

  62. Banan A, et al. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther. 2000;294(3):997–1008.

    PubMed  CAS  Google Scholar 

  63. Rao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in caco-2 cell monolayer. Methods Mol Biol. 2008;447:171–83.

    Article  PubMed  CAS  Google Scholar 

  64. Forsyth CB, et al. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res. 2011. doi:10.1111/j.1530-0277.2011.01510.x.

  65. Tang Y, et al. Oats supplementation prevents alcohol-induced gut leakiness in rats by preventing alcohol-induced oxidative tissue damage. J Pharmacol Exp Ther. 2009;329(3):952–8.

    Article  PubMed  CAS  Google Scholar 

  66. Keshavarzian A, et al. Preventing gut leakiness by oats supplementation ameliorates alcohol-induced liver damage in rats. J Pharmacol Exp Ther. 2001;299(2):442–8.

    PubMed  CAS  Google Scholar 

  67. Chen CY, et al. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr. 2007;137(6):1375–82.

    PubMed  CAS  Google Scholar 

  68. Chen CY, et al. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr. 2004;134(6):1459–66.

    PubMed  CAS  Google Scholar 

  69. Meydani M. Potential health benefits of avenanthramides of oats. Nutr Rev. 2009;67(12):731–5.

    Article  PubMed  Google Scholar 

  70. Bratt K, et al. Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. J Agric Food Chem. 2003;51(3):594–600.

    Article  PubMed  CAS  Google Scholar 

  71. Emmons CL, Peterson DM, Paul GL. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem. 1999;47(12):4894–8.

    Article  PubMed  CAS  Google Scholar 

  72. Ren Y, et al. Chemical characterization of the avenanthramide-rich extract from oat and its effect on D-galactose-induced oxidative stress in mice. J Agric Food Chem. 2011;59(1):206–11.

    Article  PubMed  CAS  Google Scholar 

  73. Koenig RT, et al. Avenanthramides are bioavailable and accumulate in hepatic, cardiac, and skeletal muscle tissue following oral gavage in rats. J Agric Food Chem. 2011;59(12):6438–43.

    Article  PubMed  CAS  Google Scholar 

  74. Wang C, et al. Ethanol upregulates iNOS expression in colon through activation of nuclear factor-kappa B in rats. Alcohol Clin Exp Res. 2011;34(1):57–63.

    Article  Google Scholar 

  75. Tiwari V, Chopra K. Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain. J Neurochem. 2011;117(4):678–90.

    PubMed  CAS  Google Scholar 

  76. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–505.

    Article  PubMed  CAS  Google Scholar 

  77. Bubici C, et al. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25(51):6731–48.

    Article  PubMed  CAS  Google Scholar 

  78. Liu L, et al. The antiatherogenic potential of oat phenolic compounds. Atherosclerosis. 2004;175(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  79. Guo W, et al. Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells. Free Radic Biol Med. 2008;44(3):415–29.

    Article  PubMed  CAS  Google Scholar 

  80. Guo W, et al. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer. 2010;62(8):1007–16.

    Article  PubMed  CAS  Google Scholar 

  81. Wan XY, et al. Inhibitory effects of taurine and oat fiber on intestinal endotoxin release in rats. Chem Biol Interact. 2011;184(3):502–4.

    Article  Google Scholar 

  82. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136(6):2015–31.

    Article  PubMed  CAS  Google Scholar 

  83. Roberfroid M, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl 2):S1–63.

    Article  PubMed  CAS  Google Scholar 

  84. Broekaert WF, et al. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr. 2011;51(2):178–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to especially thank Maliha Shaikh, M.S.; Lijuan Zhang, M.D.; and Phillip Engen for their contributions to the research that made this chapter possible. In addition, we wish to acknowledge that this research was made possible with support through NIH/NIAAA grants AA013645, AA020216, and RC2AA01940 (A.K) and AA018729 (Y.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Keshavarzian M.D., FRCP, FACP, FACG, AGAF .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forsyth, C.B., Tang, Y., Voigt, R.M., Rai, T., Keshavarzian, A. (2013). Oats Supplementation and Alcohol-Induced Oxidative Tissue Damage. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics