Skip to main content

The Centrosome Life Story in Xenopus laevis

  • Chapter
  • First Online:
The Centrosome

Abstract

Xenopus laevis is a privileged model for the centrosome research, and cell cycle and developmental studies. Centrosomes are composed of their core components, the centrioles, surrounded by the pericentriolar material. Like in most vertebrates, with the exception of the mouse, Xenopus centriole is paternally inherited. During gametogenesis, spermatozoa retain centrioles, but lose most of its pericentriolar material, whereas oocytes lose their centrioles, but maintain centrosomal proteins. Upon fertilization, the sperm centriole is transmitted to the egg, where it assembles maternal proteins, such as γ-tubulin and pericentrin, to form a biparental functional centrosome. The centrosome formed in a zygote plays a crucial role in embryo development by providing a novel axis of polarity and transmission of correct number of MTOCs to all embryonic cells. In parthenogenetic embryos, which do not inherit paternal centrioles, embryonic development arrests through the formation of abnormal spindles and chaotic abortive cleavages. Centrosome assembly and maturation have been extensively studied at the molecular level in cell-free extracts obtained from Xenopus oocytes, eggs, and embryos. Studies on Xenopus centrosome have proven very useful for better understanding of many fundamental functions of centrosomes during embryo development and in cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alliegro MC (2008) The implications of centrosomal RNA. RNA Biol 5:198–200

    PubMed  CAS  Google Scholar 

  • Alliegro MC, Alliegro MA (2008) Centrosomal RNA correlates with intron-poor nuclear genes in Spisula oocytes. Proc Natl Acad Sci U S A 105(19):6993–6997

    Article  PubMed  CAS  Google Scholar 

  • Alliegro MC, Alliegro MA, Palazzo RE (2006) Centrosome-associated RNA in surf clam oocytes. Proc Natl Acad Sci U S A 103(24):9034–9038

    Article  PubMed  CAS  Google Scholar 

  • Azimzadeh J, Wong ML, Downhour DM, Sánchez Alvarado A, Marshall WF (2012) Centrosome loss in the evolution of planarians. Science 335:461–463

    Article  PubMed  CAS  Google Scholar 

  • Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Bernardini G, Stipani R, Melone G (1986) The ultrastructure of Xenopus spermatozoon. J Ultrastr Mol Struct Res 94:188–194

    Article  Google Scholar 

  • Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15:2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Feric E, Weis K, Heald R (2007) Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol 179:1365–1373

    Article  PubMed  CAS  Google Scholar 

  • Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Eddé B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143(6):1575–1589

    Article  PubMed  CAS  Google Scholar 

  • Bornens M (2012) The centrosome in cells and organisms. Science 335:422–426

    Article  PubMed  CAS  Google Scholar 

  • Brittle AL, Ohkura H (2005) Centrosome maturation: Aurora lights the way to the poles. Curr Biol 15:R880–R882

    Article  PubMed  CAS  Google Scholar 

  • Brownlee CW, Klebba JE, Buster DW, Rogers GC (2011) The protein phosphatase 2A regulatory subunit twins stabilizes Plk4 to induce centriole amplification. J Cell Biol 195:231–243

    Article  PubMed  CAS  Google Scholar 

  • Brunet S, Polanski Z, Verlhac MH, Kubiak JZ, Maro B (1998) Bipolar meiotic spindle formation without chromatin. Curr Biol 8:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Buendia B, Draetta G, Karsenti E(1992) Regulation of the microtubule nucleating activity of centrosomes in Xenopus egg extracts: role of cyclin A-associated protein kinase. J Cell Biol 116(6):1431–1442

    Google Scholar 

  • Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144

    Google Scholar 

  • Debec A, Sullivan W, Bettencourt-Dias M (2010) Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 67:2173–2194

    Article  PubMed  CAS  Google Scholar 

  • Detivaud L, Pascreau G, Karaiskou A, Osborne HB, Kubiak JZ (2003) Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. J Cell Sci 116:2697–2705

    Article  PubMed  CAS  Google Scholar 

  • Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ (1989) Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141(1):163–174

    Article  Google Scholar 

  • Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M (1994) Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76:639–650

    Article  PubMed  CAS  Google Scholar 

  • Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM (2010) Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–718

    Article  PubMed  CAS  Google Scholar 

  • Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL (2011) Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 21(5):428–432

    Article  PubMed  CAS  Google Scholar 

  • Félix MA, Antony C, Wright M, Maro B (1994) Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus sperm aster formation. J Cell Biol 124(1–2):19–31

    Article  PubMed  Google Scholar 

  • Franck N, Montembault E, Romé P, Pascal A, Cremet JY, Giet R (2011) CDK11(p58) is required for centriole duplication and Plk4 recruitment to mitotic centrosomes. PLoS ONE 6(1):e14600

    Article  PubMed  CAS  Google Scholar 

  • Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C (2000) Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci 113:1127–1138

    PubMed  CAS  Google Scholar 

  • Gard DL, Kirschner MW (1987) Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs. J Cell Biol 105(5):2191–2201

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Hafezi S, Zhang T, Doxsey SJ (1990) Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol 110(6):2033–2042

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Affleck D, Error BM (1995a) Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene. Dev Biol 168(1):189–201

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Cha BJ, Schroeder MM (1995b) Confocal immunofluorescence microscopy of microtubules, MAPs, and MTOCs during amphibian oogenesis and early development. Curr. Top. Dev Biol 31: 383–431

    Google Scholar 

  • Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C (1999a) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274:15005–15013

    Article  PubMed  CAS  Google Scholar 

  • Giet R, Uzbekov R, Kireev I, Prigent C (1999b) The Xenopus laevis centrosome aurora/Ipl1-related kinase. Biol Cell 91:461–470

    PubMed  CAS  Google Scholar 

  • Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81:95–105

    Article  PubMed  CAS  Google Scholar 

  • Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, Maro B (1993) γ-tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci 105(Pt 1):157–166

    PubMed  CAS  Google Scholar 

  • Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010) Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol 191:721–729

    Article  PubMed  CAS  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–425

    Article  PubMed  CAS  Google Scholar 

  • Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A (1997) Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J Cell Biol 138(3):615–628

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol 67(1):105–117

    Article  PubMed  CAS  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283(5403):851–854

    Article  PubMed  CAS  Google Scholar 

  • Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188:191–198

    Article  PubMed  CAS  Google Scholar 

  • Huchon D, Crozet N, Cantenot N, Ozon R (1981) Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure. Reprod Nutr Dev 21(1):135–148

    Article  PubMed  CAS  Google Scholar 

  • Kallenbach RJ (1983) The induction of de novo centrioles in sea urchin eggs: a possible common mechanism for centriolar activation among parthenogenetic procedures. Eur J Cell Biol 30(2):159–166

    PubMed  CAS  Google Scholar 

  • Karsenti E, Newport J, Hubble R, Kirschner M (1984) Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J Cell Biol 98(5):1730–1745

    Article  PubMed  CAS  Google Scholar 

  • Kato KH, Sugiyama M (1971) On the de novo formation of the centriole in the activated sea urchin egg. Dev Growth Differ 13(4):359–366

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005). Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170(7):1047–1055

    Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Jaglarz M, Dougherty M, Stewart MD, Nel-Themaat L, Bilinski S (2008) Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis. Exp Cell Res 314:3245–3254

    Article  PubMed  CAS  Google Scholar 

  • Klotz C, Dabauvalle MC, Paintrand M, Weber T, Bornens M, Karsenti E (1990) Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol 110(2):405–415

    Article  PubMed  CAS  Google Scholar 

  • Kochanski RS, Borisy GG (1990) Mode of centriole duplication and distribution. J Cell Biol 110:1599–1605

    Article  PubMed  CAS  Google Scholar 

  • Kubiak JZ (1991) Cleavage divisions of bisected sea urchin eggs and zygotes: implications for centrosome role and inheritance. Eur Arch Biol (Bruxelles) 102:103–109

    Google Scholar 

  • Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158:617–623

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama R, Borisy GG (1983) Cytasters induced within unfertilized sea-urchin eggs. J Cell Sci 61:175–189

    PubMed  CAS  Google Scholar 

  • La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A (2005) The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 168(5):713–722

    Article  PubMed  Google Scholar 

  • Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 96(6):2817–2822

    Article  CAS  Google Scholar 

  • Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686

    Article  PubMed  CAS  Google Scholar 

  • Legagneux V, Omilli F, Osborne HB (1995) Substrate-specific regulation of RNA deadenylation in Xenopus embryo and activated egg extracts. RNA 1:1001–1008

    PubMed  CAS  Google Scholar 

  • Maller J, Poccia D, Nishioka D, Kidd P, Gerhart J, Hartman H (1976) Spindle formation and cleavage in Xenopus eggs injected with centriole-containing fractions from sperm. Exp Cell Res 99(2):285–294

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G (1998) Centrosome reduction during mouse spermiogenesis. Dev Biol 203(2):424–434

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Simerly C, Schatten G (2000) Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod 15(2):256–263

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    Article  PubMed  CAS  Google Scholar 

  • Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, Robbe-Sermesant K, Jolly T, Cardinaud B, Moreilhon C, Giovannini-Chami L, Nawrocki-Raby B, Birembaut P, Waldmann R, Kodjabachian L, Barbry P (2011) Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol 13:693–699

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Maller JL (2002) Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 295(5554):499–502

    Article  CAS  Google Scholar 

  • Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD (2000) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312(5991):232–237

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001 Jan 12) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104(1):95–106

    Article  CAS  Google Scholar 

  • Nadezhdina ES, Skoblina MN, Fais D, Chentsov YS (1999) Exclusively juvenile centrioles in Xenopus laevis oocytes injected with preparations of mature centrioles. Microsc Res Tech 44(6):430–434

    Article  PubMed  CAS  Google Scholar 

  • Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M (2011) Overexpression of miR-210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol 224:280–288

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17(5):215–221

    Article  PubMed  CAS  Google Scholar 

  • Paris J, Philippe M (1990) Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev Biol 140:221–224

    Article  PubMed  CAS  Google Scholar 

  • Pascreau G, Delcros JG, Cremet JY, Prigent C, Arlot-Bonnemains Y (2005) Phosphorylation of maskin by Aurora-A participates in the control of sequential protein synthesis during Xenopus laevis oocyte maturation. J Biol Chem 280:13415–13423

    Article  PubMed  CAS  Google Scholar 

  • Roghi C, Giet R, Uzbekov R, Morin N, Chartrain I, Le Guellec R, Couturier A, Dorée M, Philippe M, Prigent C (1998) The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J Cell Sci 111:557–572

    Google Scholar 

  • Sathananthan AH, Ratnam SS, Ng SC, Tarín JJ, Gianaroli L, Trounson A (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11(2):345–356

    Article  PubMed  CAS  Google Scholar 

  • Schatten H, Schatten G, Mazia D, Balczon R, Simerly C (1986) Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci U S A 83:105–109

    Article  PubMed  CAS  Google Scholar 

  • Schatten H, Walter M, Mazia D, Biessmann H, Paweletz N, Coffe G, Schatten G (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc Natl Acad Sci U S A 84:8488–8492

    Article  PubMed  CAS  Google Scholar 

  • Sillibourne JE, Bornens M (2010) Polo-like kinase 4: the odd one out of the family. Cell Div 5:25

    Article  PubMed  Google Scholar 

  • Simerly C, Zoran SS, Payne C, Dominko T, Sutovsky P, Navara CS, Salisbury JL, Schatten G (1999) Biparental inheritance of γ-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell 10(9):2955–2969

    PubMed  CAS  Google Scholar 

  • Sluder G, Miller FJ, Rieder CL (1986) The reproduction of centrosomes: nuclear versus cytoplasmic controls. J Cell Biol 103:1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76(4):623–637

    Article  PubMed  CAS  Google Scholar 

  • Stevens NR, Raposo AA, Basto R, Johnston D, Raff JW (2007) From stem cell to embryo without centrioles. Curr Biol 17:1498–1503

    Article  PubMed  CAS  Google Scholar 

  • Szöllosi D, Ozil JP (1991) De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol Cell 72(1–2):61–66

    Article  PubMed  Google Scholar 

  • Szöllosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    PubMed  Google Scholar 

  • Tarkowski AK, Witkowska A, Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226:162–165

    Article  PubMed  CAS  Google Scholar 

  • Tournier F, Karsenti E, Bornens M (1989) Parthenogenesis in Xenopus eggs injected with centrosomes from synchronized human lymphoid cells. Dev Biol 136(2):321–329

    Article  PubMed  CAS  Google Scholar 

  • Tournier F, Cyrklaff M, Karsenti E, Bornens M (1991a) Centrosomes competent for parthenogenesis in Xenopus eggs support procentriole budding in cell-free extracts. Proc Natl Acad Sci U S A 88(22):9929–9933

    Article  PubMed  CAS  Google Scholar 

  • Tournier F, Komesli S, Paintrand M, Job D, Bornens M (1991b) The intercentriolar linkage is critical for the ability of heterologous centrosomes to induce parthenogenesis in Xenopus. J Cell Biol 113(6):1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5:242–248

    Article  PubMed  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442(7105):947–951

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A, Sluder G (2007) Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176(2):173–182

    Article  PubMed  CAS  Google Scholar 

  • Varmark H (2004) Functional role of centrosomes in spindle assembly and organization. J Cell Biochem 91:904–914

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R (1998) A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 8:903–913

    Article  PubMed  CAS  Google Scholar 

  • Zhang QY, Tamura M, Uetake Y, Washitani-Nemoto S, Nemoto S (2004) Regulation of the paternal inheritance of centrosomes in starfish zygotes. Dev Biol 266(1):190–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Malgorzata Kloc, Houston, TX for valuable discussions and providing unpublished electron microscopy images of centrioles in Xenopus laevis oogonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Z. Kubiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kubiak, J.Z., Prigent, C. (2012). The Centrosome Life Story in Xenopus laevis . In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_20

Download citation

Publish with us

Policies and ethics