Skip to main content

How to Investigate Interactions Between Membrane Proteins and Ligands by Solid-State NMR

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

Solid-state NMR is an established method for biophysical studies of membrane proteins within the lipid bilayers and an emerging technique for structural biology in general. In particular magic angle sample spinning has been found to be very useful for the investigation of large membrane proteins and their interaction with small molecules within the lipid bilayer. Using a number of examples, we illustrate and discuss in this chapter, which information can be gained and which experimental parameters need to be considered when planning such experiments. We focus especially on the interaction of diffusive ligands with membrane proteins.

Andrea Lakatos and Karsten Mörs contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  2. Watts A (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4:555–568

    Article  PubMed  CAS  Google Scholar 

  3. Laws DD, Bitter H-M, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed Engl 41:3096–3129

    Article  PubMed  CAS  Google Scholar 

  4. Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed Engl 49:8346–8357

    Article  PubMed  CAS  Google Scholar 

  5. Higman V, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44:245–260

    Article  PubMed  CAS  Google Scholar 

  6. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  PubMed  CAS  Google Scholar 

  7. Schubert M, Manolikas T, Rogowski M, Meier B (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35:167–173

    Article  PubMed  CAS  Google Scholar 

  8. Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74

    Article  PubMed  CAS  Google Scholar 

  9. Lee K, Androphy E, Baleja J (1995) A novel method for selective isotope labeling of bacterially expressed proteins. J Biomol NMR 5:93–96

    Article  PubMed  CAS  Google Scholar 

  10. Heise H, Hoyer W, Becker S, Andronesi O, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876

    Article  PubMed  CAS  Google Scholar 

  11. Waugh DS (1996) Genetic tools for selective labeling of proteins alpha-15N-amino acids. J Biomol NMR 8:184–192

    Article  PubMed  CAS  Google Scholar 

  12. Tong K, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67

    Article  PubMed  CAS  Google Scholar 

  13. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  PubMed  CAS  Google Scholar 

  14. Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon Y, Choe S (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci U S A 107:10902–10907

    Article  PubMed  CAS  Google Scholar 

  15. Hefke F, Bagaria A, Reckel S, Ullrich S, Dötsch V, Glaubitz C, Güntert P (2011) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84

    Article  PubMed  CAS  Google Scholar 

  16. Patching S, Herbert R, O’Reilly J, Brough A, Henderson P (2004) Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli. J Am Chem Soc 126:86–87

    Article  PubMed  CAS  Google Scholar 

  17. Perler F, Davis E, Dean G, Gimble F, Jack W, Neff N, Noren C, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127

    Article  PubMed  CAS  Google Scholar 

  18. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  PubMed  CAS  Google Scholar 

  19. Schwarz D, Junge F, Durst F, Frolich N, Schneider B, Reckel S, Sobhanifar S, Dotsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957

    Article  PubMed  CAS  Google Scholar 

  20. Noirot C, Habenstein B, Bousset L, Melki R, Meier B, Endo Y, Penin FO, Böckmann A (2011) Wheat-germ cell-free production of prion proteins for solid-state NMR structural studies. N Biotechnol 28:232–238

    Article  PubMed  CAS  Google Scholar 

  21. Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  PubMed  CAS  Google Scholar 

  22. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  PubMed  CAS  Google Scholar 

  23. Abdine A, Verhoeven M, Warschawski D (2011) Cell-free expression and labeling strategies for a new decade in solid-state NMR. N Biotechnol 28:272–276

    Article  PubMed  CAS  Google Scholar 

  24. Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038

    Article  PubMed  CAS  Google Scholar 

  25. Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2006) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369

    Article  Google Scholar 

  26. Boland M, Middleton D (2004) Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR. Magn Reson Chem 42:204–211

    Article  PubMed  CAS  Google Scholar 

  27. Privé GG (2009) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:379–385

    Article  PubMed  Google Scholar 

  28. Abe R, Caaveiro J, Kudou M, Tsumoto K (2010) Solubilization of membrane proteins with novel n-acylamino acid detergents. Mol Biosyst 6:677–679

    Article  PubMed  CAS  Google Scholar 

  29. Landsmann S, Lizandara-Pueyo C, Polarz S (2010) A new class of surfactants with multinuclear, inorganic head groups. J Am Chem Soc 132:5315–5321

    Article  PubMed  CAS  Google Scholar 

  30. Popot J (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  PubMed  CAS  Google Scholar 

  31. Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  PubMed  Google Scholar 

  32. Holloway PW (1973) A simple procedure for removal of triton X-100 from protein samples. Anal Biochem 53:304–308

    Article  PubMed  CAS  Google Scholar 

  33. Rigaud JL, Levy D, Mosser G, Lambert O (1998) Detergent removal by non-polar polystyrene beads. Eur Biophys J 27:305–319

    Article  CAS  Google Scholar 

  34. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  PubMed  CAS  Google Scholar 

  35. Margolles A, Putman M, van Veen H, Konings W (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38:16298–16306

    Article  PubMed  CAS  Google Scholar 

  36. Hellmich U, Haase W, Velamakanni S, van Veen H, Glaubitz C (2008) Caught in the act: ATP hydrolysis of an ABC-multidrug transporter followed by real-time magic angle spinning NMR. FEBS Lett 582:3557–3562

    Article  PubMed  CAS  Google Scholar 

  37. Shi L, Ahmed M, Zhang W, Whited G, Brown L, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386:1078–1093

    Article  PubMed  CAS  Google Scholar 

  38. Levy D, Chami M, Rigaud JL (2001) Two-dimensional crystallization of membrane proteins: the lipid layer strategy. FEBS Lett 504:187–193

    Article  PubMed  CAS  Google Scholar 

  39. Shastri S, Vonck J, Pfleger N, Haase W, Kuehlbrandt W, Glaubitz C (2007) Proteorhodopsin: characterisation of 2D crystals by electron microscopy and solid state NMR. Biochim Biophys Acta 1768:3012–3019

    Article  PubMed  CAS  Google Scholar 

  40. Hiller M, Krabben L, Vinothkumar K, Castellani F, van Rossum B-J, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem 6:1679–1684

    Article  PubMed  CAS  Google Scholar 

  41. Alvarez F, Orelle C, Davidson A (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132:9513–9515

    Article  PubMed  CAS  Google Scholar 

  42. Kijac A, Li Y, Sligar S, Rienstra C (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703

    Article  PubMed  CAS  Google Scholar 

  43. Rahman M, Patching S, Ismat F, Henderson P, Herbert R, Baldwin S, McPherson M (2008) Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol Membr Biol 25:683–690

    Article  PubMed  CAS  Google Scholar 

  44. Middleton DA, Robins R, Feng X, Levitt MH, Spiers ID, Schwalbe CH, Reid DG, Watts A (1997) The conformation of an inhibitor bound to the gastric proton pump. FEBS Lett 410:269–274

    Article  PubMed  CAS  Google Scholar 

  45. Luca S, White J, Sohal A, Filippov D, van Boom J, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its g protein-coupled receptor. Proc Natl Acad Sci U S A 100:10706–10711

    Article  PubMed  CAS  Google Scholar 

  46. Lopez J, Shukla A, Reinhart C, Schwalbe H, Michel H, Glaubitz C (2008) The structure of the neuropeptide bradykinin bound to the human g-protein coupled receptor bradykinin b2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47:1668–1671

    Article  PubMed  CAS  Google Scholar 

  47. Williamson PTF, Roth JF, Haddingham T, Watts A (2000) Expression and purification of recombinant neurotensin in Escherichia coli. Protein Expr Purif 19:271–275

    Article  PubMed  CAS  Google Scholar 

  48. Lee KH, Kwon YC, Yoo SJ, Kim DM (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system. Protein Expr Purif 71:16–20

    Article  PubMed  CAS  Google Scholar 

  49. Watts A, Straus S, Grage S, Kamihira M, Lam Y, Zhao X (2004) Membrane protein structure determination using solid-state NMR. Methods Mol Biol 278:403–473

    PubMed  CAS  Google Scholar 

  50. Raleigh D, Levitt M, Griffin R (1988) Rotational resonance in solid state NMR. Chem Phys Lett 146:71–76

    Article  CAS  Google Scholar 

  51. Verhoeven A, Williamson PTF, Zimmermann H, Ernst M, Meier BH (2004) Rotational-resonance distance measurements in multi-spin systems. J Magn Reson 168:314–326

    Article  PubMed  CAS  Google Scholar 

  52. Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional Fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475

    CAS  Google Scholar 

  53. Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  54. Grage SL, Watts A, Webb GA (2006) Applications of REDOR for distance measurements in biological solids. Annu Rep NMR Spectrosc 60:191–228

    Article  CAS  Google Scholar 

  55. Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209

    CAS  Google Scholar 

  56. Michal CA, Jelinski LW (1997) REDOR 3D: heteronuclear distance measurements in uniformly labeled and natural abundance solids. J Am Chem Soc 119:9059–9060

    Article  CAS  Google Scholar 

  57. Hohwy M, Jakobsen HJ, Eden M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694

    Article  CAS  Google Scholar 

  58. Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance: supplementary volume. Wiley, England, pp 165–196

    Google Scholar 

  59. Spooner PJ, Rutherford NG, Watts A, Henderson PJ (1994) NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. Proc Natl Acad Sci U S A 91:3877–3881

    Article  PubMed  CAS  Google Scholar 

  60. Spooner P, Veenhoff L, Watts A, Poolman B (1999) Structural information on a membrane transport protein from nuclear magnetic resonance spectroscopy using sequence-selective nitroxide labeling. Biochemistry 38:9634–9639

    Article  PubMed  CAS  Google Scholar 

  61. Spooner PJ, O’Reilly WJ, Homans SW, Rutherford NG, Henderson PJ, Watts A (1998) Weak substrate binding to transport proteins studied by NMR. Biophys J 75:2794–2800

    Article  PubMed  CAS  Google Scholar 

  62. Patching S, Brough A, Herbert R, Rajakarier A, Henderson P, Middleton D (2004) Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. J Am Chem Soc 126:3072–3080

    Article  PubMed  CAS  Google Scholar 

  63. Im WB, Blakeman DP, Mendlein J, Sachs G (1984) Inhibition of (H+/K+)-ATPase and H+ accumulation in hog gastric membranes by trifluoperazine, verapamil and 8-(n,n-diethylamino)octyl-3,4,5-trimethoxybenzoate. Biochim Biophys Acta 770:65–72

    Article  PubMed  CAS  Google Scholar 

  64. Lee YK, Kurur ND, Helmle M, Johannessen OG, Nielsen NC, Levitt MH (1995) Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence. Chem Phys Lett 242:304–309

    Article  CAS  Google Scholar 

  65. Appleyard AN, Herbert RB, Henderson PJ, Watts A, Spooner PJ (2000) Selective NMR observation of inhibitor and sugar binding to the galactose-H+ symport protein GalP, of Escherichia coli. Biochim Biophys Acta 1509:55–64

    Article  PubMed  CAS  Google Scholar 

  66. Wu X, Zilm KW (1993) Complete spectral editing in CPMAS NMR. J Magn Reson A 102:205–213

    Article  CAS  Google Scholar 

  67. Watts A (2002) Direct studies of ligand-receptor interactions and ion channel blocking (review). Mol Membr Biol 19:267–275

    Article  PubMed  CAS  Google Scholar 

  68. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  PubMed  CAS  Google Scholar 

  69. Wishart DS, Sykes BD (1994) The 13C chemical-shift index—a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

    Article  PubMed  CAS  Google Scholar 

  70. Wishart DS, Sykes BD, Richards FM (1992) The chemical-shift index—a fast and simple method for the assignment of protein secondary structure through NMR-spectroscopy. Biochemistry 31:1647–1651

    Article  PubMed  CAS  Google Scholar 

  71. Krabben L, van Rossurn BJ, Jehle S, Bocharov E, Lyukmanova EN, Schulga AA, Arseniev A, Hucho F, Oschkinat H (2009) Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy. J Mol Biol 390:662–671

    Article  PubMed  CAS  Google Scholar 

  72. Bocharov EV, Lyukmanova EN, Ermolyuk YS, Schulga AA, Pluzhnikov KA, Dolgikh DA, Kirpichnikov MP, Arseniev AS (2003) Resonance assignment of 13C-15N-labeled snake neurotoxin II from Naja oxiana. Appl Magn Reson 24:247–254

    Article  CAS  Google Scholar 

  73. Hong M (1999) Solid-state dipolar inadequate NMR spectroscopy with a large double-quantum spectral width. J Magn Reson 136:86–91

    Article  PubMed  CAS  Google Scholar 

  74. Heise H, Luca S, de Groot B, Grubmüller H, Baldus M (2005) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120

    Article  PubMed  CAS  Google Scholar 

  75. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    PubMed  Google Scholar 

  76. Gieldon A, Lopez JJ, Glaubitz C, Schwalbe H (2008) Theoretical study of the human bradykinin-bradykinin b2 receptor complex. Chembiochem 9:2487–2497

    Article  PubMed  CAS  Google Scholar 

  77. Middleton D, Rankin S, Esmann M, Watts A (2000) Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc Natl Acad Sci U S A 97:13602–13607

    Article  PubMed  CAS  Google Scholar 

  78. Williamson PT, Verhoeven A, Miller KW, Meier BH, Watts A (2007) The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 104:18031–18036

    Article  PubMed  CAS  Google Scholar 

  79. Ratnala V, Kiihne S, Buda F, Leurs R, de Groot H, DeGrip W (2007) Solid-state NMR evidence for a protonation switch in the binding pocket of the H1 receptor upon binding of the agonist histamine. J Am Chem Soc 129:867–872

    Article  PubMed  CAS  Google Scholar 

  80. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  PubMed  CAS  Google Scholar 

  81. Agarwal V, Fink U, Schuldiner S, Reif B (2007) Mas solid-state NMR studies on the multidrug transporter emre. Biochim Biophys Acta 1768:3036–3043

    Article  PubMed  CAS  Google Scholar 

  82. Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C (2008) The key residue for substrate transport Glu(14) in the EmrE dimer is asymmetric. J Biol Chem 283:3281–3288

    Article  PubMed  CAS  Google Scholar 

  83. Murphy O, Kovacs F, Sicard E, Thompson L (2001) Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry 40:1358–1366

    Article  PubMed  CAS  Google Scholar 

  84. Isaac B, Gallagher G, Balazs Y, Thompson L (2002) Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry 41:3025–3036

    Article  PubMed  CAS  Google Scholar 

  85. Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7:263–270. doi:10.1038/nchembio.543

    Article  PubMed  CAS  Google Scholar 

  86. Maly T, Debelouchina G, Bajaj V, Hu K, Joo C, Mak-Jurkauskas M, Sirigiri J, van der Wel P, Herzfeld J, Temkin R, Griffin R (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211

    Article  PubMed  Google Scholar 

  87. Ishii Y, Wickramasinghe NP, Chimon S (2003) A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J Am Chem Soc 125:3438–3439

    Article  PubMed  CAS  Google Scholar 

  88. Franks WT, Atreya HS, Szyperski T, Rienstra CM (2010) GFT projection NMR spectroscopy for proteins in the solid state. J Biomol NMR 48:213–223

    Article  PubMed  CAS  Google Scholar 

  89. Lopez J, Kaiser C, Asami S, Glaubitz C (2009) Higher sensitivity through selective 13C excitation in solid-state NMR spectroscopy. J Am Chem Soc 131:15970–15971

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Glaubitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lakatos, A., Mörs, K., Glaubitz, C. (2012). How to Investigate Interactions Between Membrane Proteins and Ligands by Solid-State NMR. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics