Skip to main content

Single-Cell Sampling and Analysis (SiCSA)

  • Protocol
  • First Online:
Plant Salt Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

Single-cell sampling and analysis allows the determination of solute concentrations in individual cells and tissues. This is particularly important when studying a stress such as salinity, where the cell- and tissue-specific distribution of sodium and chloride may decide a plant’s fate. In this chapter, some selected SiCSA methods are described in detail, and their advantages and possible pitfalls discussed. These methods include pressure-driven extraction of cell contents (cell sap sampling) and the analysis of extracted cell sap through picolitre osmometry (osmolality), energy-dispersive X-ray analysis (concentrations of Na, K, P, S, Cl, Ca), and microfluorometry (concentrations of, for example, nitrate and total amino acids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569

    Article  CAS  Google Scholar 

  2. Fricke W, Akhiyarova G, Wei W et al (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  PubMed  CAS  Google Scholar 

  3. Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374–388

    Article  PubMed  CAS  Google Scholar 

  4. Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426

    Article  CAS  Google Scholar 

  5. Cuin TA, Miller AJ, Laurie SA et al (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  PubMed  CAS  Google Scholar 

  6. Carden DE, Walker DJ, Flowers TJ et al (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  7. Karley AJ, Leigh RA, Sanders D (2000) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    Article  PubMed  CAS  Google Scholar 

  8. Leigh RA, Storey R (1993) Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity. J Exp Bot 44:755–762

    Article  CAS  Google Scholar 

  9. Delane R, Greenway H, Munns R et al (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. J Exp Bot 33:557–573

    Article  CAS  Google Scholar 

  10. Dietz KJ, Schramm M, Lang B et al (1992) Characterization of the epidermis from barley primary leaves. 2. The role of the epidermis in ion compartmentation. Planta 187:431–437

    Article  CAS  Google Scholar 

  11. Karley AJ, Leigh RA, Sanders D (2000) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844

    Article  PubMed  CAS  Google Scholar 

  12. Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191:180–190

    Article  CAS  Google Scholar 

  13. Outlaw WH, Zhang SQ (2001) Single-cell ­dissection and microdroplet chemistry. J Exp Bot 52:605–614

    Article  PubMed  CAS  Google Scholar 

  14. Brandt S, Kloska S, Altmann T et al (2002) Using array hybridization to monitor gene expression at the single cell level. J Exp Bot 53:2315–2323

    Article  PubMed  CAS  Google Scholar 

  15. Roy SJ, Gilliham M, Berger B et al (2008) Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant Cell Environ 31:861–871

    Article  PubMed  CAS  Google Scholar 

  16. Malone M, Leigh RA, Tomos AD (1991) Concentrations of vacuolar inorganic-ions in individual cells of intact wheat leaf epidermis. J Exp Bot 42:305–309

    Article  CAS  Google Scholar 

  17. Tomos AD, Hinde P, Richardson P et al (1994) Microsampling and measurements of solutes in single cells. In: Harris N, Oparka KJ (eds) Plant cell biology—a practical approach. IRL Press, Oxford

    Google Scholar 

  18. Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Ann Rev Plant Phys 50:447–472

    Article  CAS  Google Scholar 

  19. Tomos AD, Sharrock RA (2001) Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. J Exp Bot 52:623–630

    Article  PubMed  CAS  Google Scholar 

  20. Fricke W, Leigh RA, Tomos AD (1994) Concentrations of inorganic and organic solutes in extracts from individual epidermal, mesophyll and bundle-sheath cells of barley leaves. Planta 192:310–316

    CAS  Google Scholar 

  21. Roy SJ, Cuin TA, Leigh RA (2003) Nanolitre-scale assays to determine the activities of enzymes in individual plant cells. Plant J 34:555–564

    Article  PubMed  CAS  Google Scholar 

  22. Bazzanella A, Lochmann H, Tomos AD et al (1998) Determination of inorganic cations and anions in single plant cells by capillary zone electrophoresis. J Chromatogr A 809:231–239

    Article  CAS  Google Scholar 

  23. Kehr J (2001) High resolution spatial analysis of plant systems. Curr Opin Plant Biol 4:197–201

    Article  PubMed  CAS  Google Scholar 

  24. Malone M, Leigh RA, Tomos AD (1989) Extraction and analysis of sap from individual wheat leaf-cells—the effect of sampling speed on the osmotic-pressure of extracted sap. Plant Cell Environ 12:919–926

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Deri Tomos and all his former team members and also Professor Roger A. Leigh for teaching me single-cell sampling and analyzing techniques during my postdoc studies at Bangor University, North Wales, UK. Thanks also to Tamas Visnovitz, UCD, Ireland, for help with ImageJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland Fricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fricke, W. (2012). Single-Cell Sampling and Analysis (SiCSA). In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics