Skip to main content

NF-Ya Protein Delivery as a Tool for Hematopoietic Progenitor Cell Expansion

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

The clinical potential of therapeutic quantities of primary hematopoietic cells, either unmodified or altered via genetic modification, has stimulated the search for techniques that allow the production of large numbers of hematopoietic precursors, more primitive progenitors, and perhaps hematopoietic stem cells (HSC) themselves. Modifications of in vitro culture conditions to promote progenitor cell expansion have included combinations of polypeptide cytokines, small molecules, and transcription factors. Here we describe the methods for use of the transcription factor linked to a TAT-based protein transcription domain, in combination with cytokines and serum-free culture condition to stimulate the proliferation of primary cells. Human peripheral blood (PB) CD34+ cells treated with TAT-NF-Ya fusion protein and grown in vitro for 1 month proliferate four times more than did cells in cultures that contained only cytokines, including increased production of hematopoietic cells of all maturities. These results and techniques should be suitable for multiple applications of ex vivo generation of hematopoietic cells using protein transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  2. Zhang X, Beard B, Trobridge G et al (2008) High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest 118:1502–1510

    Article  PubMed  CAS  Google Scholar 

  3. Gao X, Kim K, Liu D (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9:E92–104

    Article  PubMed  CAS  Google Scholar 

  4. Heitz F, Morris M, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  PubMed  CAS  Google Scholar 

  5. Frankel A, Pabo C (1988) Fingering too many proteins. Cell 53:675–675

    Article  PubMed  CAS  Google Scholar 

  6. Green M, Loewenstein P (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  7. Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  Google Scholar 

  8. Schwarze S, Ho A, Vocero-Akbani A, Dowdy S (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  PubMed  CAS  Google Scholar 

  9. Csaszar E, Gavigan G, Ungrin M et al (2009) An automated system for delivery of an unstable transcription factor to hematopoietic stem cell cultures. Biotechnol Bioeng 103:402–412

    Article  PubMed  CAS  Google Scholar 

  10. Zhu J, Zhang Y, Joe G, Pompetti R, Emerson SG (2005) NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci USA 102:11728–11733

    Article  PubMed  CAS  Google Scholar 

  11. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27

    Article  PubMed  CAS  Google Scholar 

  12. FitzGerald PC, Shlyakhtenko A, Mir AA, Vinson C (2004) Clustering of DNA sequences in human promoters. Genome Res 14:1562–1574

    Article  PubMed  CAS  Google Scholar 

  13. Marino-Ramirez L, Spouge JL, Kanga GC, Landsman D (2004) Statistical analysis of over-represented words in human promoter sequences. Nucleic Acids Res 32:949–958

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki YR, Yamashita M, Shirota Y et al (2004) Large-scale collection and characterization of promoters of human and mouse genes. In Silico Biol 4:429–444

    PubMed  Google Scholar 

  15. Marziali G, Perrotti E, Ilari R et al (1999) The activity of the CCAAT-box binding factor NF-Y is modulated through the regulated expression of its A subunit during monocyte to macrophage differentiation: regulation of tissue specific genes through a ubiquitous transcription factor. Blood 93:519–526

    PubMed  CAS  Google Scholar 

  16. Hu Q, Maity SN (2000) Stable expression of a dominant negative mutant of CCAAT binding factor/NF-Y in mouse fibroblast cells resulting in retardation of cell growth and inhibition of transcription of various cellular genes. J Biol Chem 275:4435–4444

    Article  PubMed  CAS  Google Scholar 

  17. Fang X, Han H, Stamatoyannopoulos G, Li Q (2004) Developmentally specific role of the CCAAT box in regulation of human gamma-globin gene expression. J Biol Chem 279:5444–5449

    Article  PubMed  CAS  Google Scholar 

  18. Huang DY, Kuo YY, Lai JS, Suzuki Y, Sugano S, Chang ZF (2004) GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res 32:3935–3946

    Article  PubMed  CAS  Google Scholar 

  19. Tabe Y, Konopleva M, Contractor R et al (2006) Upregulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 107:1546–1554

    Article  PubMed  CAS  Google Scholar 

  20. Campanero MR, Herrero A, Calvo V (2008) The histone deacetylase inhibitor trichostatin A induces GADD45c expression via Oct and NF-Y binding sites. Oncogene 27:1263–1272

    Article  PubMed  CAS  Google Scholar 

  21. Bhattacharya A, Deng JM, Zhang Z, Behringer R, de Crombrugghe B, Maity SN (2003) The B subunit of the CCAAT box binding transcription factor complex CBF/NF-Y is essential for early mouse development and cell proliferation. Cancer Res 63:8167–8172

    PubMed  CAS  Google Scholar 

  22. Zhu J, Giannola DM, Zhang Y, Rivera AJ, Emerson SG (2003) NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood 102:2420–2427

    Article  PubMed  CAS  Google Scholar 

  23. Domashenko AD, Danet-Desnoyers G, Aron A, Carroll MP, Emerson SG (2010) TAT-mediatied transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hemaopoietic progenitor cells. Blood 116:2676–2683

    Article  PubMed  CAS  Google Scholar 

  24. Brinkmann U, Mattes RE, Buckel P (1989) High level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114

    Article  PubMed  CAS  Google Scholar 

  25. Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Steve Dowdy (University of California, San Diego) for kindly providing the pTAT-HA vector and Jiang Zhu (Shanghai Second Medical School, Shanghai, China) for the NF-Ya plasmid.

This study was supported by National Institute of Health (grant RO1-CA090833).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Emerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Domashenko, A.D., Wiener, S., Emerson, S.G. (2012). NF-Ya Protein Delivery as a Tool for Hematopoietic Progenitor Cell Expansion. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics