Skip to main content

Fucose-Targeted Glycoengineering of Pharmaceutical Cell Lines

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

Glycosylation is known to have an impact on pharmacokinetics and pharmacodynamics of therapeutic proteins. While the production of pharmaceutically desirable glycosylation forms of a therapeutic protein can in certain cases be influenced by the upstream process parameters, certain specialized glycan structures can only be produced in large quantities from cell lines that have been genetically engineered.

One particular case where a specialized glycostructure has a major impact on pharmacodynamic mode of action is the enhanced ADCC-effector function of afucosylated IgG1-type monoclonal antibodies. Here we describe the methodological details of a powerful yet simple glycoengineering approach targeted at the fucosylation machinery within eukaryotic cells. As an example we demonstrate the modification of the permanent avian cell line AGE1.CR.pIX which is characterized by a unique glycosylation machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcgammaRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  2. Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783

    Article  CAS  PubMed  Google Scholar 

  3. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9(8):1716–1728

    Article  CAS  PubMed  Google Scholar 

  4. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M, Woods R, Rowe DC, Cheng L, Cook K, Evans K, Sims GP, Pfarr DS, Bowen MA, Dall’Acqua W, Shlomchik M, Tedder TF, Kiener P, Jallal B, Wu H, Coyle AJ (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335(1):213–222

    Article  CAS  PubMed  Google Scholar 

  5. Ishiguro T, Kawai S, Habu K, Sugimoto M, Shiraiwa H, Iijima S, Ozaki S, Matsumoto T, Yamada-Okabe H (2010) A defucosylated anti-CD317 antibody exhibited enhanced antibody-dependent cellular cytotoxicity against primary myeloma cells in the presence of effectors from patients. Cancer Sci 101(10):2227–2233

    Article  CAS  PubMed  Google Scholar 

  6. Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX (2010) Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res 70(11):4481–4489

    Article  CAS  PubMed  Google Scholar 

  7. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  PubMed  Google Scholar 

  8. Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, Imai-Nishiya H, Okazaki A, Shinkawa T, Natsume A, Niwa R, Shitara K, Satoh M (2007) Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology 55(2–3):109–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344(12):1387–1390

    Article  CAS  PubMed  Google Scholar 

  10. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  PubMed  Google Scholar 

  11. Brockhausen I, Schachter H (1997) Glycosyltransferases involved in N- and O-glycan biosynthesis. Chapman & Hall, Weinheim

    Google Scholar 

  12. Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780(3):472–478

    Article  CAS  PubMed  Google Scholar 

  13. Campbell C, Stanley P (1984) A dominant mutation to Ricin resistance in Chinese hamster ovary cells induces UDPGlcNAc: glycopeptide beta-4-Nacetylglucosaminyltransferase III activity. J Biol Chem 259(21):13370–13378

    CAS  PubMed  Google Scholar 

  14. Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V (2009) An avian cell line designed for production of highly attenuated viruses. Vaccine 27(5):748–756

    Article  CAS  PubMed  Google Scholar 

  15. von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618

    Article  Google Scholar 

  16. Maass K, Ranzinger R, Geyer H, von der Lieth CW, Geyer R (2007) “Glyco-peakfinder”-de novo composition analysis of glycoconjugates. Proteomics 7(24):4435–4444

    Article  CAS  PubMed  Google Scholar 

  17. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7(4):1650–1659

    Article  CAS  PubMed  Google Scholar 

  18. Somoza JR, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl ML, Somers WS, Sullivan FX (2000) Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme’s catalytic mechanism and regulation by GDP-fucose. Structure 8(2):123–35

    Article  CAS  PubMed  Google Scholar 

  19. King JD, Poon KK, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS (2009) The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J 76(10):2686–2700

    Article  Google Scholar 

  20. Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProcess Int 1:44–53

    CAS  Google Scholar 

  21. Raju TS (2008) Terminal sugars of Gc glycans influence antibody effector functions of IgGs. Curr Opin Immun 20:471–478

    Article  CAS  Google Scholar 

  22. Naso MF, Tam SH, Scallon BJ, Raju TS (2010) Engineering host cell lines to reduce terminal sialylation of secreted antibodies. MAbs 2(5):519–27

    Article  PubMed Central  PubMed  Google Scholar 

  23. Raju TS, Scallon B (2007) Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 23:964–971

    CAS  PubMed  Google Scholar 

  24. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc ­glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immun 44:1525–1534

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Veronique Blanchard, Dr. Markus Berger, and Dr. Matthias Kaup, Charite Berlin for very helpful discussions and support throughout the program. Parts of this work were supported by the Bundesministerium für Bildung und Forschung (InnoProfile 03IP511) and by the Sonnenfeld Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Henning von Horsten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ogorek, C., Jordan, I., Sandig, V., von Horsten, H.H. (2012). Fucose-Targeted Glycoengineering of Pharmaceutical Cell Lines. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics