Skip to main content

Overview of Molecular Biological Methods for the Detection of Pathogens Causing Sexually Transmitted Infections

  • Protocol
  • First Online:
Diagnosis of Sexually Transmitted Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 903))

Abstract

We review here different state-of-the-art molecular methods currently used in the diagnosis of sexually transmitted infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention (2002) Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae Infections-2000. MMWR Morb Mortal Wkly Rep 51(N. RR-15):1–38

    Google Scholar 

  2. Smith DW, Tapsall JW, Lum G (2005) Guidelines for the use and interpretation of nucleic acid and detection tests for Neisseria gonorrhoeae in Australia: a position paper on behalf of the Public Health Laboratory Network. Clin Infect Dis 29:358–365

    Google Scholar 

  3. BASHH (2010) Guidance for gonorrhoeae testing in England and Wales. Health Protection Agency, London

    Google Scholar 

  4. Standards for the management of sexually transmitted infections (STIs). British Association for Sexual Health and HIV (BASHH), Royal Society of Medicine, 1 Wimpole Street, London W 1 G OAE. Jan 2010

    Google Scholar 

  5. Joint Commission International Accreditation Standards for Clinical Laboratories. Joint Commission International, 2nd edn. Apri1 2010

    Google Scholar 

  6. Bachmann LH, Johnson RE, Cheng H, Markowitz L, Papp JR, Palella FJ Jr, Hook EW 3rd (2010) Nucleic acid amplification tests for diagnosis of Neisseria gonorrhoeae and Chlamydia trachomatis rectal infections. J Clin Microbiol 48:1827–1832

    PubMed  Google Scholar 

  7. McIver CJ, Rismanto N, Smith C, Naing ZW, Rayner B, Lusk MJ, Konecny P, White PA, Rawlinson WD (2009) Multiplex PCR testing detection of higher-than-expected rates of cervical mycoplasma, ureaplasma, and trichomonas and viral agent infections in sexually active Australian women. J Clin Microbiol 47:1358–1363

    PubMed  CAS  Google Scholar 

  8. Mckechnie ML, Hillman R, Couldwell D, Kong F, Freedman E, Wang H, Gilbert GL (2009) Simultaneous identification of 14 genital microorganisms in urine by use of a multiplex PCR-based reverse line blot assay. J Clin Microbiol 47:1871–1877

    PubMed  CAS  Google Scholar 

  9. Curtis KA, Rudolph DL, Owen SM (2008) Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 151:264–270

    PubMed  CAS  Google Scholar 

  10. Hagiwara M, Sasaki H, Matsuo K, Honda M, Kawase M, Nakagawa H (2007) Loop-mediated isothermal amplification method for detection of human papillomavirus type 6, 11, 16, and 18. J Med Virol 79:605–615

    PubMed  CAS  Google Scholar 

  11. Enomoto Y, Yoshikawa T, Ihira M, Akimoto S, Miyake F, Usui C, Suga S, Suzuki K, Kawana T, Nishiyama Y, Asano Y (2005) Rapid diagnosis of herpes simplex virus infection by a loop-mediated isothermal amplification method. J Clin Microbiol 43:951–955

    PubMed  CAS  Google Scholar 

  12. Bignell C, Ison CA, Jungmann E (2006) Gonorrhoea. Sex Transm Infect 82(Suppl IV):iv6–iv9

    PubMed  Google Scholar 

  13. Hopkins MJ, Ashton LJ, Alloba F, Alawattegama A, Hart IJ (2010) Validation of a laboratory-developed real-time PCR protocol for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Sex Transm Infect 86:207–211

    PubMed  CAS  Google Scholar 

  14. Gaydos CA, Cartwright CP, Colaninno P, Welsch J, Holden J, Ho SY, Webb EM, Anderson C, Bertuzis R, Zhang L, Miller T, Leckie G, Abravaya K, Robinson J (2010) Performance of the Abbott RealTime CT/NG for the Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 48:3236–3243

    PubMed  CAS  Google Scholar 

  15. Bachmann LH, Johnson RE, Cheng H, Markowitz L, Papp JR, Palella FJ Jr, Hook EW 3rd (2010) Nucleic acid amplification tests for diagnosis of Neisseria gonorrhoeae and Chlamydia trachomatis rectal infections. J Clin Microbiol 48:1827–1832

    PubMed  Google Scholar 

  16. Bilek N, Martin IM, Bell G, Kinghorn GR, Ison CA, Spratt BG (2007) Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts. J Clin Microbiol 45:3564–3567

    PubMed  Google Scholar 

  17. Ilina EN, Oparina NY, Shitikov EA, Borovskaya AD, Govorun VM (2010) Molecular surveillance of clinical Neisseria gonorrhoeae isolates in Russia. J Clin Microbiol 48:3681–3689

    PubMed  Google Scholar 

  18. Lynn F, Hobbs MH, Zenilman JM, Behets FMTF, Van Damme K, Rasamindrakotroka A, Bash MC (2005) Genetic typing of the porin protein of Neisseria gonorrhoeae from clinical noncultured samples for strain characterization and identification of mixed gonococcal infections. J Clin Microbiol 43:368–375

    PubMed  CAS  Google Scholar 

  19. Vernel-Pauillac F, Merien F (2006) A novel real-time duplex PCR assay for detecting penA and porA genotypes in Neisseria gonorrhoeae: comparison with phenotypes determined by the E-test. Clin Chem 52:2294–2296

    PubMed  CAS  Google Scholar 

  20. Vernel-Pauillac F, Falcot V, Whiley D, Merien F (2006) Rapid detection of a chromosomally mediated penicillin resistance-associated ponA mutation in Neisseria gonorrhoeae using a real-time PCR assay. FEMS Microbiol Lett 255:66–74

    PubMed  CAS  Google Scholar 

  21. Siedner MJ, Pandori M, Castro L, Barry P, Whittington WL, Liska S et al (2007) Real-time PCR assay for detection of quinolone-resistant Neisseria gonorrhoeae in urine samples. J Clin Microbiol 45:1250–1254

    PubMed  CAS  Google Scholar 

  22. Horner P, Boag F. 2006 UK national guideline for the management of genital tract infection with Chlamydia trachomatis. BASHH. http://www.bashh.org/documents/61/61.pdf

  23. Centers for Disease Control and Prevention (2009) Clinic-based testing for rectal and pharyngeal Neisseria gonorrhoeae and Chlamydia trachomatis infections by community-based organizations  ¾  five cities, United States, 2007. MMWR Morb Mortal Wkly Rep 58:716–719

    Google Scholar 

  24. Spersen DJ, Flatten KS, Jones MF, Smith TF (2005) Prospective comparison of cell cultures and nucleic acid amplification tests for laboratory diagnosis of Chlamydia trachomatis infections. J Clin Microbiol 43:5324–5326

    Google Scholar 

  25. Health Protection Agency (2005) National standard method: chlamydia infection—testing by nucleic acid amplification tests VSOP 37. London: Health Protection Agency. http://www.hpa-standardmethods.org.uk/documents/vsop/pdf/vsop37.pdf

  26. Herring A, Richens J (2006) Lympho­granuloma venereum. Sex Transm Infect 82(Suppl IV):iv23–iv25

    PubMed  Google Scholar 

  27. Morre SA, Spaargaren J, Fennema JS, de Vries HJ, Coutinho RA, Pena AS (2005) Real-time polymerase chain reaction to diagnose lymphogranuloma venereum. Emerg Infect Dis 11:1311–1312

    PubMed  Google Scholar 

  28. Morre S, Spaargaren J, Fennema JS et al (2005) Molecular diagnosis of lymphogranuloma venereum: PCR-based restriction fragment length polymorphism and real-time PCR. J Clin Microbiol 43:5412–5413

    PubMed  Google Scholar 

  29. Chen CY, Chi KH, Alexander S et al (2007) The molecular diagnosis of lymphogranuloma venereum: evaluation of a real-time multiplex polymerase chain reaction test using rectal and urethral specimens. Sex Transm Dis 34:451–455

    PubMed  Google Scholar 

  30. Lan J, Walboomers JM, Roosendaal R et al (1993) Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol 31:1060–1065

    PubMed  CAS  Google Scholar 

  31. Sturm PD, Moodley P, Govender K et al (2005) Molecular diagnosis of lymphogranuloma venereum in patients with genital ulcer disease. J Clin Microbiol 43:2973–2975

    PubMed  CAS  Google Scholar 

  32. Robertson JA, Stemke GW, Davis JW Jr et al (2002) Proposal of Ureaplasma parvum sp. nov. and amended description of Ureaplasma urealyticum (Shepard et al. 1974) Robertson et al. 2001. Int J Syst Evol Microbiol 52:587–597

    PubMed  Google Scholar 

  33. Haggerty CL, Totten PA, Ferris M et al (2009) Clinical characteristics of bacterial vaginosis among women testing positive for fastidious bacteria. Sex Transm Infect 85:242–248

    PubMed  CAS  Google Scholar 

  34. McAuliffe L, Ellis RJ, Lawes JR et al (2005) 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. J Med Microbiol 54:731–739

    PubMed  CAS  Google Scholar 

  35. Jensen JS, Borre MB, Dohn B (2003) Detection of Mycoplasma genitalium by PCR amplification of the 16S rRNA gene. J Clin Microbiol 41:261–266

    PubMed  CAS  Google Scholar 

  36. Svenstrup HF, Jensen JS, Björnelius E, Lidbrink P, Birkelund S, Christiansen G (2005) Development of a quantitative real-time PCR assay for detection of Mycoplasma genitalium. J Clin Microbiol 43:3121–3128

    PubMed  CAS  Google Scholar 

  37. Jensen JS, Uldum SA, Søndergård-Andersen J, Vuust J, Lind K (1991) Polymerase chain reaction for detection of Mycoplasma genitalium in clinical samples. J Clin Microbiol 29:46–50

    PubMed  CAS  Google Scholar 

  38. Wroblewski JK, Manhart LE, Dickey KA, Hudspeth MK, Totten PA (2006) Comparison of transcription-mediated amplification and PCR assay results for various genital specimen types for detection of Mycoplasma genitalium. J Clin Microbiol 44:3306–3312

    PubMed  CAS  Google Scholar 

  39. Koek AG, Bruisten SM, Dierdorp M, van Dam AP, Templeton K (2006) Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum. Clin Microbiol Infect 12:1233–1236

    PubMed  CAS  Google Scholar 

  40. Palmer HM, Higgins SP, Herring AJ, Kingston MA (2003) Use of PCR in the diagnosis of early syphilis in the United Kingdom. Sex Transm Infect 79:479–483

    PubMed  CAS  Google Scholar 

  41. Bruisten SM, Cairo I, Fennema H, Pijl A, Buimer M, Peerbooms PG, Van Dyck E, Meijer A, Ossewaarde JM, van Doornum JG (2001) Diagnosing genital ulcer disease in a clinic for sexually transmitted diseases in Amsterdam, The Netherlands. J Clin Microbiol 39:601–605

    PubMed  CAS  Google Scholar 

  42. Centurion-Lara A, Castro C, Shaffer JM, Van Voorhis WC, Marra CM, Lukehart SA (1997) Detection of Treponema pallidum by a sensitive reverse transcriptase PCR. J Clin Microbiol 35:1348–1352

    PubMed  CAS  Google Scholar 

  43. Pope V, Fox K, Liu H, Marfin AA, Leone P, Seña AC et al (2005) Molecular subtyping of Treponema pallidum from North and South Carolina. Clin Microbiol 43:3743–3746

    CAS  Google Scholar 

  44. Pandori MW, Gordones C, Castro L, Engelman J, Siedner M, Lukehart S et al (2007) Detection of azithromycin resistance in Treponema pallidum by real time PCR. Antimicrob Agents Chemother 51:3425–3430

    PubMed  CAS  Google Scholar 

  45. Carter JS, Bowden FJ, Bastian I et al (1999) Phylogenetic evidence for reclassification of Calymmatobacterium granulomatis as Klebsiella granulomatis comb. nov. Int J Syst Bacteriol 49:1695–1700

    PubMed  Google Scholar 

  46. Kharsany AB, Hoosen AA, Kiepiela P et al (1999) Phylogenetic analysis of Calymmato­bacterium granulomatis based on 16S rRNA gene sequences. J Med Microbiol 48:841–847

    PubMed  CAS  Google Scholar 

  47. Carter J, Bowden FJ, Sriprakash KS et al (1999) Diagnostic polymerase chain reaction for donovanosis. Clin Infect Dis 28:1168–1169

    PubMed  CAS  Google Scholar 

  48. Richens J (2006) Donovanosis (granuloma inguinale). Sex Transm Infect 82(Suppl IV):iv21–iv22

    PubMed  Google Scholar 

  49. Alfa M (2005) The laboratory diagnosis of Haemophilus ducreyi. Can J Infect Dis Med Microbiol 16:31–34

    PubMed  Google Scholar 

  50. Totten PA, Kuypers JM, Chen CY, Alfa MJ, Parsons LM, Dutro SM et al (2000) Etiology of genital ulcer disease in Dakar, Senegal, and comparison of PCR and serologic assays for detection of Haemophilus ducreyi infection. J Clin Microbiol 38:268–273

    PubMed  CAS  Google Scholar 

  51. Johnson SR, Martin DH, Cammarata C, Morse SA (1995) Alterations in sample preparation increase sensitivity of PCR assay for diagnosis of chancroid. J Clin Microbiol 33:1036–1038

    PubMed  CAS  Google Scholar 

  52. Lewis DA, Ison CA (2006) Chancroid. Sex Transm Infect 82(Suppl IV):iv19–iv20

    PubMed  Google Scholar 

  53. Liu AY, Jiang MJ, Yin YP, Sun JF (2005) Detection of pathogens causing genital ulcer disease by multiplex polymerase chain reaction. Chin Med Sci J 20:273–275

    PubMed  CAS  Google Scholar 

  54. Mackay IM, Harnett G, Jeoffreys N, Bastian I, Sriprakash KS, Siebert D et al (2006) Detection and discrimination of herpes simplex viruses, Haemophilus ducreyi, Treponema pallidum, and Calymmatobacterium (Klebsiella) granulomatis from genital ulcers. Clin Infect Dis 42:1431–1438

    PubMed  CAS  Google Scholar 

  55. Suntoke TR, Hardick A, Tobian AA, Mpoza B, Laeyendecker O, Serwadda D, Opendi P, Gaydos CA, Gray RH, Wawer MJ, Quinn TC, Reynolds SJ (2009) Evaluation of multiplex real-time PCR for detection of Haemophilus ducreyi, Treponema pallidum, herpes simplex virus type 1 and 2 in the diagnosis of genital ulcer disease in the Rakai District, Uganda. Sex Transm Infect 85:97–101

    PubMed  CAS  Google Scholar 

  56. Borges MC, Colares JK, Lima DM, Fonseca BA (2009) Haemophilus ducreyi detection by polymerase chain reaction in oesophageal lesions of HIV patients. Int J STD AIDS 20:238–240

    PubMed  CAS  Google Scholar 

  57. Mbwana J, Bölin I, Lyamuya E, Mhalu F, Lagergård T (2006) Molecular characterization of Haemophilus ducreyi isolates from different geographical locations. J Clin Microbiol 44:132–137

    PubMed  CAS  Google Scholar 

  58. Hidalgo F, Melón S, de Oña M, Do Santos V, Martínez A, Cimadevilla R, Rodríguez M (1998) Diagnosis of herpetic keratoconjunctivitis by nested polymerase chain reaction in human tear film. Eur J Clin Microbiol Infect Dis 17:120–123

    PubMed  CAS  Google Scholar 

  59. Perkins D, Chong H, Irvine B, Domagalski J (2007) Genital co-infection with herpes simplex viruses type 1 and 2: comparison of real-time PCR assay and traditional viral isolation methods. J Cell Mol Med 11:581–584

    PubMed  CAS  Google Scholar 

  60. Strick LB, Wald A (2006) Diagnostics for herpes simplex virus: is PCR the new gold standard? Mol Diagn Ther 10:17–28

    PubMed  CAS  Google Scholar 

  61. Peña KC, Adelson ME, Mordechai E, Blaho JA (2010) Genital herpes simplex virus type 1 in women: detection in cervicovaginal specimens from gynecological practices in the United States. J Clin Microbiol 48:150–153

    PubMed  Google Scholar 

  62. Gardella C, Huang ML, Wald A, Magaret A, Selke S, Morrow R, Corey L (2010) Rapid polymerase chain reaction assay to detect herpes simplex virus in the genital tract of women in labor. Obstet Gynecol 115:1209–1216

    PubMed  Google Scholar 

  63. Pandori MW, Lei J, Wong EH, Klausner J, Liska S (2006) Real-Time PCR for detection of herpes simplex virus without nucleic acid extraction. BMC Infect Dis 6:104

    PubMed  Google Scholar 

  64. Hlinomazová Z, Loukotová V, Horáčková M, Serý O (2010) The treatment of HSV1 ocular infections using quantitative real-time PCR results. Acta Ophthalmol. Jun 10. DOI:10.1111/j.1755-3768.2010.01933.X (Epub ahead of printing)

  65. Burrel S, Deback C, Agut H, Boutolleau D (2010) Genotypic characterization of UL23 thymidine kinase and UL30 DNA polymerase of clinical isolates of herpes simplex virus: natural polymorphism and mutations associated with resistance to antivirals. Antimicrob Agents Chemother 54:4833–4842

    PubMed  CAS  Google Scholar 

  66. Sauerbrei A, Deinhardt S, Zell R, Wutzler P (2010) Phenotypic and genotypic characterization of acyclovir-resistant clinical isolates of herpes simplex virus. Antiviral Res 86:246–252

    PubMed  CAS  Google Scholar 

  67. Centers for Disease Control and Prevention (2010) Sexually transmitted diseases treatment guidelines 2010. MMWR Morb Mortal Wkly Rep 59(No. RR-12):56–63

    Google Scholar 

  68. Brown HL, Fuller DD, Jasper LT, Davis TE, Wright JD (2004) Clinical evaluation of Affirm VPIII in the detection and identification of Trichomonas vaginalis, Gardnerella vaginalis and Candida species in vaginitis/vaginosis. Infect Dis Obstet Gynecol 12:17–21

    PubMed  CAS  Google Scholar 

  69. Marrone J, Fairley CK, Saville M, Bradshaw C, Bowden FJ, Horvath LB et al (2008) Temporal associations with declining Trichomonas vaginalis diagnosis rates among women in the State of Victoria, Australia, 1947 to 2005. Sex Transm Dis 35:572–576

    PubMed  Google Scholar 

  70. Mayta H, Gilman RH, Calderon MM, Gottlieb A, SotoG TI et al (2000) 18S Ribosomal DNA-based PCR for diagnosis of Trichomonas vaginalis. J Clin Microbiol 38:2683–2687

    PubMed  CAS  Google Scholar 

  71. Riley DE, Roberts MC, Takayama T, Krieger JN (1992) Development of a polymerasa chain reaction-based diagnosis of Trichomonas vaginalis. J Clin Microbiol 30:465–472

    PubMed  CAS  Google Scholar 

  72. Kengne P, Veas F, Vidal N, Rey JP, Cuny G (1994) Trichomonas vaginalis: repeated DNA target for highly sensitive and specific polymerase chain reaction diagnosis. Cell Mol Biol 40:819–831

    PubMed  CAS  Google Scholar 

  73. Madico G, Quinn TC, Rómpalo MJRKT, Gaydos CA (1998) Diagnosis of Trichomonas vaginalis infection by PCR using vaginal swab samples. J Clin Microbiol 36:3205–3210

    PubMed  CAS  Google Scholar 

  74. Shaio MF, Lin PR, Liu JY (1997) Colorimetric one-tube nested PCR for detection of Trichomonas vaginalis in vaginal discharge. J Clin Microbiol 35:132–138

    PubMed  CAS  Google Scholar 

  75. Paces J, Urbánková V, Urbánek P (1992) Cloning and characterization of a repetitive DNA sequence specific for Trichomonas vaginalis. Mol Biochem Parasitol 54:247–256

    PubMed  CAS  Google Scholar 

  76. Mabey D, Ackers J, Adu-Sarkodie Y (2006) Trichomonas vaginalis infection. Sex Transm Infect 82(Suppl IV):iv26–iv27

    PubMed  Google Scholar 

  77. Caliendo AM, Jordan JA, Green AM, Ingersoll J, Diclemente RJ, Wingood GM (2005) Real-time PCR improves detection of Trichomonas vaginalis infection compared with culture using self-collected vaginal swabs. Infect Dis Obstet Gynecol 13:145–150

    PubMed  CAS  Google Scholar 

  78. Simpson P, Higgins G, Qiao M, Waddell R, Kok T (2007) Real-time PCRs for detection of Trichomonas vaginalis beta-tubulin and 18S rRNA genes in female genital specimens. J Med Microbiol 56:772–777

    PubMed  CAS  Google Scholar 

  79. Shafir SC, Sorvillo FJ (2006) Viability of Trichomonas vaginalis in urine: epidemiologic and clinical implications. J Clin Microbiol 44:3787–3789

    PubMed  Google Scholar 

  80. Marrazzo JM (2003) Bacterial vaginosis. Curr Treat Opt Infect Dis 5:63–68

    Google Scholar 

  81. Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911

    PubMed  CAS  Google Scholar 

  82. Ferris MJ, Norori J, Zozaya-Hinchliffe M, Martin DH (2007) Cultivation-independent analysis of changes in bacterial vaginosis flora following metronidazole treatment. J Clin Microbiol 45:1016–1018

    PubMed  CAS  Google Scholar 

  83. Ferris MJ, Masztal A, Aldridge KE, Fortenberry JD, Fidel PL Jr, Martin DH (2004) Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect Dis 4:5

    PubMed  Google Scholar 

  84. Srinivasan S, Fredricks DN (2008) The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis. doi:10.1155/2008/750479

  85. Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H (2005) Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106(Pt 1):1013–1023

    PubMed  Google Scholar 

  86. Psallidopoulos MC, Schnittman SM, Thompson LM 3rd, Baseler M, Fauci AS, Lane HC, Salzman NP (1989) Integrated proviral human immunodeficiency virus type 1 is present in CD4+ peripheral blood lymphocytes in healthy seropositive individuals. J Virol 63:4626–4631

    PubMed  CAS  Google Scholar 

  87. Larder BA, Kemp SD (1989) Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246:1155–1158

    PubMed  CAS  Google Scholar 

  88. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272:1167–1170, Erratum in: Science 1997 Jan 3; 275(5296):14

    PubMed  CAS  Google Scholar 

  89. Johnson LF, Lewis DA (2008) The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sex Transm Dis 35:946–959

    PubMed  Google Scholar 

  90. Gimeno A, Plazas J, Sánchez-Payá J, Llopis C, Boix V, Portilla J (2010) Reproducibility of a method to quantify vaginal human immunodeficiency virus viral load. Enferm Infecc Microbiol Clin 28:439–441

    PubMed  Google Scholar 

  91. McClelland RS, Lavreys L, Katingima C, Overbaugh J, Chohan V, Mandaliya K, Ndinya-Achola J, Baeten JM (2005) Contribution of HIV-1 infection to acquisition of sexually transmitted disease: a 10-year prospective study. J Infect Dis 191:333–338

    PubMed  Google Scholar 

  92. Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children (2010) Guidelines for the use of antiretroviral agents in pediatric HIV infection. pp 1–219. http://aidsinfo.nih.gov/ContentFiles/PediatricGuidelines.pdf

  93. Panel on Antiretroviral Guidelines for Adults and Adolescents (2009) Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. pp 1–161. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf

  94. Kellam P, Larder BA (1994) Recombinant virus assay: a rapid, phenotypic assay for assessment of drug susceptibility of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother 38:23–30

    PubMed  CAS  Google Scholar 

  95. Edelmann A, Kalus U, Oltmann A, Stein A, Unbehaun A, Drosten C, Krüger DH, Hofmann J (2010) Improvement of an ultrasensitive human immunodeficiency virus type 1 real-time reverse transcriptase-polymerase chain reaction targeting the long terminal repeat region. Transfusion 50:685–692

    PubMed  CAS  Google Scholar 

  96. Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    PubMed  CAS  Google Scholar 

  97. Georgieva S, Iordanov V, Sergieva S (2009) Nature of cervical cancer and other HPV-associated cancers. J BUON 14:391–398

    PubMed  Google Scholar 

  98. Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM (1989) Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. In: Furth M, Greaves M (eds) Molecular diagnostics of human cancer. Cancer cells, vol 7. Cold Spring Harbor, New York, pp 209−214

    Google Scholar 

  99. Ting Y, Manos MM (1990) Detection and typing of genital human papillomaviruses. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, CA, pp 356–367

    Google Scholar 

  100. Gravitt P, Peyton CL, Alessi TQ, Wheeler C, Coutlée F, Hildesheim A, Shiffman M, Scott DR, Apple RJ (2000) Improved amplification of genital human papillomaviruses. J Clin Microbiol 38:357–361

    PubMed  CAS  Google Scholar 

  101. Jacobs MV, Snidjers PJF, van den Brule AJC, Helmerhorst TJM, Meijer C, Walboomers J (1997) A general primer GP5+/GP6+ -mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 35:791–795

    PubMed  CAS  Google Scholar 

  102. De Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    PubMed  Google Scholar 

  103. Lörincz AT (1996) Molecular methods for the detection of human papillomavirus infection. Obstet Gynecol Clin North Am 23:707–730

    PubMed  Google Scholar 

  104. Hubbard RA (2033) Human papillomavirus testing methods. Arch Pathol Lab Med 127:940–945

    Google Scholar 

  105. Dilner J, Rebolj M, Birembaut P, Petry KU, Szarewski A, Munk C, de Sanjosé S, Naucler P, Lloveras B, Kjaer S, Cuzick J, van Ballgooijen M, Clavel C, Iftner T (2008) Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: joint European cohort study. BMJ 337:a1754

    Google Scholar 

  106. de Oña M, Alvarez-Argüelles ME, Torrents M, Villa L, Rodriguez-Feijoo A, Palacio A, Boga JA, Tamargo A, Melón S (2010) Prevalence, evolution, and features of infection with human papillomavirus: a 15-year longitudinal study of routine screening of a women population in the north of Spain. J Med Virol 82:597–604

    PubMed  Google Scholar 

  107. Grce M, Matovina M, Milutin-Gasperov N, Sabol I (2010) Advances in cervical cancer control and future perspectives. Coll Antropol 34:731–736

    PubMed  Google Scholar 

  108. Tamalet C, Richet H, Carcopino X, Henry M, Leretraite L, Heid P, Leandri FX, Sancho-Garnier H, Piana L (2010) Testing for human papillomavirus and measurement of viral load of HPV 16 and 18 in self-collected vaginal swabs of women who do not undergo cervical cytological screening in Southern France. J Med Virol 82:1431–1437

    PubMed  Google Scholar 

  109. Lukaszuk K, Liss J, Wozniak I, Emerich J, Wójcikowski C (2003) Human papillomavirus type 16 status in cervical carcinoma cell DNA assayed by multiplex PCR. J Clin Microbiol 41:608–612

    PubMed  CAS  Google Scholar 

  110. Zuna RE, Moore WE, Shanesmith RP, Dunn ST, Wang SS, Schiffman M, Blakey GL, Teel T (2009) Association of HPV16 E6 variants with diagnostic severity in cervical cytology samples of 354 women in a US population. Int J Cancer 125:2609–2613

    PubMed  CAS  Google Scholar 

  111. Pérez S, Cid A, Araujo A, Lamas MJ, Saran MT, Alvarez MJ, Lopez-Miragaya I, Gonzalez S, Torres J, Melón S (2011) Novel real time genotyping assay for HPV 16 E6-350 G variants detection. J Virol Methods 173:357–363

    PubMed  Google Scholar 

  112. Fukuyama S, Nishimura T, Yotsumoto H, Gushi A, Tsuji M, Kanekura T, Matsuyama T (2010) Diagnostic usefulness of a nested polymerase chain reaction assay for detecting Sarcoptes scabiei DNA in skin scrapings from clinically suspected scabies. Br J Dermatol 163:892–894

    PubMed  CAS  Google Scholar 

  113. Bezold G, Lange M, Schiener R, Palmedo G, Sander CA, Kerscher M, Peter RU (2001) Hidden scabies: diagnosis by polymerase chain reaction. Br J Dermatol 144:614–618

    PubMed  CAS  Google Scholar 

  114. Pasay C, Walton S, Fischer K, Holt D, McCarthy J (2006) PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). Am J Trop Med Hyg 74:649–657

    PubMed  CAS  Google Scholar 

  115. Villa L, Varela JA, Otero L, Sánchez C, Junquera ML, Sánchez-del-Río J, Vázquez F (2010) Molluscum contagiosum: a 20-year study in a sexually transmitted infections unit. Sex Transm Dis 37:423–424

    PubMed  Google Scholar 

  116. Porter CD, Archard LC (1987) Characterization and physical mapping of Molluscum contagiosum virus DNA and location of sequence capable of encoding a conserved domain of epidermal growth factor. J Gen Virol 68:673–682

    PubMed  CAS  Google Scholar 

  117. Thompson CH, De-Zwart-Steffe RT, Donovan B (1992) Clinical and molecular aspects of Molluscum contagiosum infection in HIV-1 positive patients. Int J STI AIDS 3:101–106

    CAS  Google Scholar 

  118. Saral Y, Kalkan A, Ozdarendeli A, Bulut Y, Doymaz MZ (2006) Detection of Molluscum contagiosum virus (MCV) subtype I as a single dominant virus subtype in Molluscum lesions from a Turkish population. Arch Med Res 37:388–391

    PubMed  CAS  Google Scholar 

  119. Trama JP, Adelson ME, Mordechai E (2007) Identification and genotyping of Molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing. J Clin Virol 40:325–329

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vazquez .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Levels of Evidence

  • Ia, evidence obtained from meta-analysis of randomized controlled trials

  • Ib, evidence obtained from at least one randomized controlled trial

  • IIa, evidence obtained from at least one well-designed controlled study without randomization

  • IIb, evidence obtained from at least one other type of well-designed quasi-experimental study

  • III, evidence obtained from well-designed nonexperimental descriptive studies

  • IV, evidence obtained from expert committee reports or opinions and/or clinical experience of respected authorities

1.2 Grading of Recommendation

  • A. Evidence at level Ia or Ib (Body of evidence can be trusted to guide practice)

  • B. Evidence at level IIa, IIb, or III (Body of evidence can be trusted to guide practice in most situations)

  • C. Evidence at level IV (Body of evidence provides some support for recommendation(s) but care should be taken in its application)

  • D. (Body of evidence is weak and recommendation must be applied with caution)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vazquez, F., Otero, L., Melón, S., de Oña, M. (2012). Overview of Molecular Biological Methods for the Detection of Pathogens Causing Sexually Transmitted Infections. In: MacKenzie, C., Henrich, B. (eds) Diagnosis of Sexually Transmitted Diseases. Methods in Molecular Biology, vol 903. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-937-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-937-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-936-5

  • Online ISBN: 978-1-61779-937-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics