Skip to main content

Using Chemical Shifts to Assess Transient Secondary Structure and Generate Ensemble Structures of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

The chemical shifts of backbone atoms in polypeptides are sensitive to the dihedral angles phi and psi and can be used to estimate transient secondary structure and to generate structural ensembles of intrinsically disordered proteins (IDPs). In this chapter, several of the random coil reference databases used to estimate transient secondary structure are described, and the procedure is outlined for using these databases to estimate transient secondary structure. A new protocol is also presented for generating a diverse ensemble of structures for an IDP and reweighting these structures to optimize the fit between simulated and experimental chemical shift values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daughdrill GW (2010) Determining structural ensembles for intrinsically disordered proteins. In: Uversky VN, Longhi S (eds) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  2. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Protein folding handbook, vol 3. WILEY-VCH, Darmstadt, pp 275–357

    Chapter  Google Scholar 

  3. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1. doi:1471-2164-9-S2-S1[pii]10.1186/1471-2164-9-S2-S1

    Google Scholar 

  4. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12

    Article  PubMed  CAS  Google Scholar 

  5. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  PubMed  CAS  Google Scholar 

  6. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  PubMed  CAS  Google Scholar 

  7. Vendruscolo M (2007) Determination of conformationally heterogeneous states of proteins. Curr Opin Struct Biol 17(1):15–20

    Article  PubMed  CAS  Google Scholar 

  8. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    Article  PubMed  CAS  Google Scholar 

  9. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    Article  PubMed  CAS  Google Scholar 

  10. Wishart DS, Nip AM (1998) Protein chemical shift analysis: a practical guide. Biochem Cell Biol 76(2–3):153–163

    Article  PubMed  CAS  Google Scholar 

  11. Wishart DS, Sykes BD (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239:363–392

    Article  PubMed  CAS  Google Scholar 

  12. Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Methods Enzymol 338:3–34

    Article  PubMed  CAS  Google Scholar 

  13. Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340

    Article  PubMed  CAS  Google Scholar 

  14. Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. In: Unfolded proteins, vol. 62. Adv Protein Chem. Academic Press Inc, San Diego, pp 311–340

    Google Scholar 

  15. Tamiola K, Acar Bi, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132(51):18000–18003. doi:10.1021/ja105656t

    Google Scholar 

  16. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) H-1, C-13 and N-15 random coil NMR chemical-shifts of the common amino-acids. 1. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81

    Article  PubMed  CAS  Google Scholar 

  17. Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123(13):2970–2978. doi:10.1021/ja003760i

    Article  PubMed  CAS  Google Scholar 

  18. Tamiola K (2009) Neighbor corrected Intrinsically disordered protein library. http://ww.protein-nmr.org/. Accessed Feb 2011

  19. Lowry DF, Stancik A, Shrestha RM, Daughdrill GW (2008) Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53. Protein Struct Funct Bioinformatics 71(2):587–598. doi:10.1002/prot.21721

    Article  CAS  Google Scholar 

  20. Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. In: Nuclear magnetic resonance of biologica macromolecules, Pt A, vol. 338. Methods Enzymol. Academic Press Inc, San Diego, pp 3–34

    Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  22. Simons KT, Bonneau R, Ruczinski I, Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176

    Google Scholar 

  23. Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129(17):5656–5664

    Article  PubMed  CAS  Google Scholar 

  24. Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26(3):215–240. doi: 5123899 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Daughdrill GW, Kashtanov S, Stancik A, Hill S, Helms G, Muschol M, Receveur-Brechot V, Ytreberg FM (2012) Understanding the Structural Ensembles of a Highly Extended Disordered Protein. Mol BioSyst 8:308–319 doi:10.1039/C1MB05243H

    Article  PubMed  CAS  Google Scholar 

  26. Matta CF, Bader RFW (2002) Atoms-in-molecules study of the genetically encoded amino acids. II. Computational study of molecular geometries. Proteins 48:519–538

    CAS  Google Scholar 

Download references

Acknowledgments

GWD is supported by the American Cancer Society (RSG-07-289-01-GMC) and the National Science Foundation (MCB-0939014). FMY and GWD are supported by the National Institutes of Health (5R21GM083827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marty Ytreberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kashtanov, S., Borcherds, W., Wu, H., Daughdrill, G.W., Ytreberg, F.M. (2012). Using Chemical Shifts to Assess Transient Secondary Structure and Generate Ensemble Structures of Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics