Skip to main content

Coarse-Grained Simulations of Protein Aggregation

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

Protein aggregation is believed to be responsible for a number of human diseases and limits the yields of pharmaceutical proteins during production. Computer simulations can be used to develop novel experimentally testable hypotheses pertaining to aggregation. While all-atom simulations with explicit solvent are too computationally intensive to address the multitude of relevant time scales, coarse-grained models make it possible to observe the transition of monomers to an equilibrium containing aggregates. Here, we provide the reader with background information and a list of steps for setting up, performing, and analyzing computer simulations of aggregating coarse-grained (CG) proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  2. Clark ED (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12:202–207

    Article  PubMed  CAS  Google Scholar 

  3. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28:920–933

    Article  Google Scholar 

  4. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47:4062–4069

    Article  CAS  Google Scholar 

  5. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675

    Article  PubMed  CAS  Google Scholar 

  6. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  PubMed  CAS  Google Scholar 

  7. Bratko D, Cellmer T, Prausnitz JM, Blanch HW (2007) Molecular simulation of protein aggregation. Biotechnol Bioeng 96:1–8

    Article  PubMed  CAS  Google Scholar 

  8. Cellmer T, Bratko D, Prausnitz JM, Blanch HW (2007) Protein aggregation in silico. Trends Biotechnol 25:254–261

    Article  PubMed  CAS  Google Scholar 

  9. Wu C, Shea JE (2011) Coarse-grained models for protein aggregation. Curr Opin Struct Biol 21:209–220

    Article  PubMed  CAS  Google Scholar 

  10. Ma BY, Nussinov R (2006) Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr Opin Chem Biol 10:445–452

    Article  PubMed  CAS  Google Scholar 

  11. Fawzi NL, Yap EH, Okabe Y, Kohlstedt KL, Brown SP, Head-Gordon T (2008) Contrasting disease and nondisease protein aggregation by molecular simulation. Acc Chem Res 41:1037–1047

    Article  PubMed  CAS  Google Scholar 

  12. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49

    Article  PubMed  CAS  Google Scholar 

  13. Bratko D, Blanch HW (2003) Effect of secondary structure on protein aggregation: a replica exchange simulation study. J Chem Phys 118:5185–5194

    Article  CAS  Google Scholar 

  14. Cellmer T, Bratko D, Prausnitz JM, Blanch H (2005) Protein-folding landscapes in multichain systems. Proc Natl Acad Sci USA 102:11692–11697

    Article  PubMed  CAS  Google Scholar 

  15. Gupta P, Hall CK, Voegler A (1999) Computer simulation of the competition between protein folding and aggregation. Fluid Phase Equilib 160:87–93

    Article  Google Scholar 

  16. Gupta P, Hall CK, Voegler AC (1998) Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Sci 7:2642–2652

    Article  PubMed  CAS  Google Scholar 

  17. Istrail S, Schwartz R, King J (1999) Lattice simulations of aggregation funnels for protein folding. J Comput Biol 6:143–162

    Article  PubMed  CAS  Google Scholar 

  18. Bratko D, Cellmer T, Prausnitz JM, Blanch HW (2006) Effect of single-point sequence alterations on the aggregation propensity of a model protein. J Am Chem Soc 128:1683–1691

    Article  PubMed  CAS  Google Scholar 

  19. Harrison PM, Chan HS, Prusiner SB, Cohen FE (1999) Thermodynamics of model prions and its implications for the problem of prion protein folding. J Mol Biol 286:593–606

    Article  PubMed  CAS  Google Scholar 

  20. Li MS, Klimov DK, Straub JE, Thirumalai D (2008) Probing the mechanisms of fibril formation using lattice models. J Chem Phys 129:175101

    Article  PubMed  Google Scholar 

  21. Tozzini V (2010) Minimalist models for proteins: a comparative analysis. Q Rev Biophys 43:333–371

    Article  PubMed  CAS  Google Scholar 

  22. Fawzi NL, Okabe Y, Yap EH, Head-Gordon T (2007) Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer’s A beta(1-40) peptide. J Mol Biol 365:535–550

    Article  PubMed  CAS  Google Scholar 

  23. Yap EH, Fawzi NL, Head-Gordon T (2008) A coarse-grained alpha-carbon protein model with anisotropic hydrogen-bonding. Proteins 70:626–638

    Article  CAS  Google Scholar 

  24. Bellesia G, Shea JE (2007) Self-assembly of beta-sheet forming peptides into chiral fibrillar aggregates. J Chem Phys 126(24):245104

    Article  PubMed  Google Scholar 

  25. Clark LA (2005) Protein aggregation determinants from a simplified model: cooperative folders resist aggregation. Protein Sci 14:653–662

    Article  PubMed  CAS  Google Scholar 

  26. Cellmer T, Bratko D, Prausnitz JM, Blanch H (2005) The competition between protein folding and aggregation: off-lattice minimalist model studies. Biotechnol Bioeng 89:78–87

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen HD, Hall CK (2006) Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. J Am Chem Soc 128:1890–1901

    Article  PubMed  CAS  Google Scholar 

  28. Nguyen HD, Hall CK (2005) Kinetics of fibril formation by polyalanine peptides. J Biol Chem 280:9074–9082

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 101:16180–16185

    Article  PubMed  CAS  Google Scholar 

  30. Marchut AJ, Hall CK (2007) Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Proteins 66:96–109

    Article  CAS  Google Scholar 

  31. Cheon M, Chang I, Hall CK (2010) Extending the PRIME model for protein aggregation to all 20 amino acids. Proteins 78:2950–2960

    Article  CAS  Google Scholar 

  32. Urbanc B, Borreguero JM, Cruz L, Stanley HE (2006) Ab initio discrete molecular dynamics approach to protein folding and aggregation. Methods Enzymol 412:314–338

    Article  CAS  Google Scholar 

  33. Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, Stanley HE, Dokholyan NV (2004) Molecular dynamics simulation of ­amyloid beta dimer formation. Biophys J 87:2310–2321

    Article  PubMed  CAS  Google Scholar 

  34. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE (2004) In silico study of amyloid beta-protein folding and oligomerization. Proc Natl Acad Sci USA 101:17345–17350

    Article  PubMed  CAS  Google Scholar 

  35. Yun SJ, Urbanc B, Cruz L, Bitan G, Teplow DB, Stanley HE (2007) Role of electrostatic interactions in amyloid beta-protein (A beta) oligomer formation: a discrete molecular dynamics study. Biophys J 92:4064–4077

    Article  PubMed  CAS  Google Scholar 

  36. Ding F, Dokholyan NV (2008) Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci USA 105:19696–19701

    Article  PubMed  CAS  Google Scholar 

  37. Ding F, LaRocque JJ, Dokholyan NV (2005) Direct observation of protein folding, aggregation, and a prion-like conformational conversion. J Biol Chem 280:40235–40240

    Article  PubMed  CAS  Google Scholar 

  38. Chen YW, Dokholyan NV (2005) A single disulfide bond differentiates aggregation pathways of beta 2-microglobulin. J Mol Biol 354:473–482

    Article  PubMed  CAS  Google Scholar 

  39. Khare SD, Ding F, Dokholyan NV (2003) Folding of Cu, Zn superoxide dismutase and familial amyotrophic lateral sclerosis. J Mol Biol 334:515–525

    Article  PubMed  CAS  Google Scholar 

  40. Sharma S, Ding F, Dokholyan NV (2008) Probing protein aggregation using discrete molecular dynamics. Front Biosci 13:4795–4807

    Article  PubMed  CAS  Google Scholar 

  41. Hall CK, Waggner VA (2006) Computational approaches to fibril structure and formation. Methods Enzymol 412:338–365

    Article  CAS  Google Scholar 

  42. Bellesia G, Shea JE (2009) Diversity of kinetic pathways in amyloid fibril formation. J Chem Phys 131(11):111102

    Article  PubMed  Google Scholar 

  43. Bellesia G, Shea JE (2009) Effect of beta-sheet propensity on peptide aggregation. J Chem Phys 130(14):145103

    Article  PubMed  Google Scholar 

  44. Auer S, Dobson CM, Vendruscolo M (2007) Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J 1:137–146

    Article  PubMed  CAS  Google Scholar 

  45. Auer S, Dobson CM, Vendruscolo M, Maritan A (2008) Self-templated nucleation in peptide and protein aggregation. Phys Rev Lett 101(25):258101

    Article  PubMed  Google Scholar 

  46. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    Article  PubMed  CAS  Google Scholar 

  47. Smith AV, Hall CK (2001) Alpha-helix formation: discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins 44:344–360

    Article  CAS  Google Scholar 

  48. Ding F, Borreguero JM, Buldyrey SV, Stanley HE, Dokholyan NV (2003) Mechanism for the alpha-helix to beta-hairpin transition. Proteins 53:220–228

    Article  CAS  Google Scholar 

  49. Ding F, Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI (2002) Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. J Mol Biol 324:851–857

    Article  PubMed  CAS  Google Scholar 

  50. Brown S, Fawzi NJ, Head-Gordon T (2003) Coarse-grained sequences for protein folding and design. Proc Natl Acad Sci USA 100:10712–10717

    Article  PubMed  CAS  Google Scholar 

  51. Sorenson JM, Head-Gordon T (2000) Matching simulation and experiment: a new simplified model for simulating protein folding. J Comput Biol 7:469–481

    Article  PubMed  CAS  Google Scholar 

  52. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  53. Sorenson JM, Head-Gordon T (2002) Protein engineering study of protein L by simulation. J Comput Biol 9:35–54

    Article  PubMed  CAS  Google Scholar 

  54. Guo ZY, Brooks CL (1997) Thermodynamics of protein folding: a statistical mechanical study of a small all-beta protein. Biopolymers 42:745–757

    Article  PubMed  CAS  Google Scholar 

  55. Karplus M, Grant DM (1959) A criterion for orbital hybridization and charge distribution in chemical bonds. Proc Natl Acad Sci USA 45:1269–1273

    Article  PubMed  CAS  Google Scholar 

  56. Cellmer T, Bratko D, Prausnitz JM, Blanch H (2005) Thermodynamics of folding and association of lattice-model proteins. J Chem Phys 122(17):174908

    Article  PubMed  Google Scholar 

  57. Cecchini M, Rao F, Seeber M, Caflisch A (2004) Replica exchange molecular dynamics simulations of amyloid peptide aggregation. J Chem Phys 121:10748–10756

    Article  PubMed  CAS  Google Scholar 

  58. Takeda T, Klimov DK (2009) Side chain interactions can impede amyloid fibril growth: replica exchange simulations of a beta peptide mutant. J Phys Chem B 113:11848–11857

    Article  PubMed  CAS  Google Scholar 

  59. Takeda T, Klimov DK (2009) Replica exchange simulations of the thermodynamics of a beta fibril growth. Biophys J 96:442–452

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Cellmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cellmer, T., Fawzi, N.L. (2012). Coarse-Grained Simulations of Protein Aggregation. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics