Skip to main content

Predicting High-Risk Disease Using Tissue Biomarkers

  • Chapter
  • First Online:
Active Surveillance for Localized Prostate Cancer

Abstract

Personalized medicine in the management of patients with prostate cancer is limited to the integration of patient attributes such as age, genetic risk, and comorbidities with specific clinical-pathological variables including serum prostate-specific antigen (PSA); imaging and features from the diagnostic prostate needle biopsy or prostatectomy specimen including tumor differentiation (i.e., Gleason); and volume and extent of disease (i.e., tumor length and/or percentage, number of positive cores at diagnosis, or pathological stage post surgery including margin status). Although the development of various clinical statistical instruments such as nomograms has provided a mechanism to interrogate such variables, most urologists rely on basic prognostic features of stage, grade, and PSA along with clinical judgment to define and understand individual risk and predict health outcomes. The reality is that the majority of patients diagnosed with prostate cancer today are in the lower, intermediate-risk category (biopsy Gleason score 6–7, PSA < 10 ng, ≤T2) where clinical variables are not able to sufficiently discriminate patients with respect to appropriate treatment and disease course (Adamy et al., J Urol 185:477–482, 2011; Yatani et al., Jpn J Clin Oncol 19:319–326, 1989; Abate-Shen et al., Differentiation 76:717–727, 2008). Furthermore, unlike other tumor types such as breast cancer, there are no routine ancillary diagnostic studies performed on the prostate needle biopsy or the prostatectomy specimen to support and refine the prognosis and treatment decision process for the individual patient.

In this chapter, we will provide an overview of prostate cancer biomarker discovery and validation strategies to identify aggressive disease at diagnosis and include an assessment of the technological advances, molecular strategies, and future methodologies to identify novel mechanisms of growth, invasion, and metastasis. We will also discuss the impact of pre-analytic specimen variability on study results and explore how advances in functional histology and mathematical models will play a central role in the development and incorporation of a systems-based platform to identify men at high risk of aggressive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamy A, Yee DS, Matsushita K, Maschino A, Cronin A, Vickers A, Guillonneau B, Scardino PT, Eastham JA. Role of prostate specific antigen and immediate confirmatory biopsy in predicting progression during active surveillance for low risk prostate cancer. J Urol. 2011;185:477–82.

    Article  PubMed  Google Scholar 

  2. Yatani R, Kusano I, Shiraishi T, Hayashi T, Stemmermann GN. Latent prostatic carcinoma: pathological and epidemiological aspects. Jpn J Clin Oncol. 1989;19:319–26.

    PubMed  CAS  Google Scholar 

  3. Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 2008;76:717–27.

    Article  PubMed  CAS  Google Scholar 

  4. Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell. 2006;9:367–78.

    Article  PubMed  CAS  Google Scholar 

  5. Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, Rosenfeld MG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139:1069–83.

    Article  PubMed  CAS  Google Scholar 

  6. Netto GJ, Epstein JI. Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology. 2010;42:384–94.

    Article  PubMed  Google Scholar 

  7. Ding Z, Wu C-J, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot AS, Wu X, Lis R, Hoshida Y, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470:269–73.

    Article  PubMed  CAS  Google Scholar 

  8. Lewinshtein D, Porter CR, Nelson P. Genomic predictors of prostate cancer therapy outcomes. Expert Rev Mol Diagn. 2010;10:619–36.

    Article  PubMed  CAS  Google Scholar 

  9. Ahmed H. Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer. 2010;2010:17–33.

    Article  PubMed  Google Scholar 

  10. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Macconaill LE, Beroukhim R, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med. 2010;16:286–94.

    Article  PubMed  CAS  Google Scholar 

  11. Shariat SF, Karakiewicz PI, Suardi N, et al. Comparison of nomograms and other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14:4400–7.

    Article  PubMed  CAS  Google Scholar 

  12. Moul JW, Mouraviev V, Sun L, et al. Prostate cancer: the new landscape. Curr Opin Urol. 2009;19:154–60.

    Article  PubMed  Google Scholar 

  13. Cooperberg MR, Konety BR. Management of localized prostate cancer in men over 65 years. Curr Opin Urol. 2009;19:309–14.

    Article  PubMed  Google Scholar 

  14. Andriole GL, Crawford ED, Grubb RL, et al. Mortality results from a randomized prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320–8.

    Article  Google Scholar 

  15. Schroder FH, Hugossson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1310–9.

    Article  Google Scholar 

  16. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310: 644–8.

    Article  PubMed  CAS  Google Scholar 

  17. Perner S, Mosquera J-M, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol. 2007;31:882–8.

    Article  PubMed  Google Scholar 

  18. Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20:538–44.

    Article  PubMed  CAS  Google Scholar 

  19. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41:619–24.

    Article  PubMed  CAS  Google Scholar 

  20. Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C, et al. ETS rearrangements and prostate cancer initiation. Nature. 2009;457:E1.

    Article  PubMed  CAS  Google Scholar 

  21. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, Clark J, Flohr P, Edwards S, Berney DM, Foster CS, Fletcher A, Gerald WL, et al. Molecular characterization of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102:678–84.

    Article  PubMed  CAS  Google Scholar 

  22. Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A, Palanisamy N, Tomlins S, Chinnaiyan A, Shah R. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol. 2009;22:1083–93.

    Article  PubMed  CAS  Google Scholar 

  23. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, Berney D, Foster CS, Gerald WL, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27:253–63.

    Article  PubMed  CAS  Google Scholar 

  24. Clark JP, Cooper CS. ETS gene fusions in prostate cancer. Nat Rev Urol. 2009;6:429–39.

    Article  PubMed  CAS  Google Scholar 

  25. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, Eastham JA, Scardino PT, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69:1400–6.

    Article  PubMed  CAS  Google Scholar 

  26. Hessles D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG transcripts and prostate cancer antigen 3 in urinary sediments may improve the diagnosis of prostate cancer. Clin Cancer Res. 2007;13:5103–8.

    Article  Google Scholar 

  27. Penney KL, Pyne S, Schumacher FR, Sinnott JA, Mucci LA, Kraft PL, Ma J, Oh WK, Kurth T, Kantoff PW, Stampfer MJ, Hunter DJ, et al. Genome- wide association study of prostate cancer mortality. Cancer Epidemiol Biomarkers Prev. 2010;19:2869–76.

    Article  PubMed  CAS  Google Scholar 

  28. Ishkanian AS, Zafarana G, Thomas J, Bristow RG. Array CGH as a potential predictor of radiocurability in intermediate risk in prostate cancer. Acta Oncol. 2010;49:888–94.

    Article  PubMed  CAS  Google Scholar 

  29. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor BS, Schulta N, Hieronymus H, Gopalan A, Ziao Y, Carver B, Arora V, Kaushik P, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  PubMed  CAS  Google Scholar 

  31. Liu ML, Jeong J, Ambannavar R, Millward C, Baehner F, Sangli C, Dutta D, Pho M, Nguyen A, Cronin MT. Rt-PCR gene expression profiling of RNA from paraffin-embedded tissues prepared using a range of different fixatives and conditions. Methods Mol Biol. 2011;724:205–37.

    Article  PubMed  CAS  Google Scholar 

  32. Saidi O, Cordon-Cardo C, Costa J. Technology insight: will systems pathology replace the pathologist? Nat Clin Pract Urol. 2007;4:39–45.

    Article  PubMed  Google Scholar 

  33. Costa J. Is clinical systems pathology the future of pathology? Arch Pathol Lab Med. 2008;132:774–6.

    PubMed  Google Scholar 

  34. Cordon-Cardo C, Kotsianti A, Verbel D, et al. Improved prediction of prostate cancer recurrence through systems pathology. J Clin Invest. 2007;117:1876–83.

    Article  PubMed  CAS  Google Scholar 

  35. Dall’Era MA, Cooperberg MR, Chan JM, et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer. 2008;112:1650–9.

    Article  PubMed  Google Scholar 

  36. Albertsen PC, Hanely JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;4:2095–101.

    Article  Google Scholar 

  37. Donovan MJ, Faisal KH, Fernandez G, et al. Personalized prediction of tumor response and cancer progression on prostate needle biopsy. J Urol. 2009;182:125–32.

    Article  PubMed  Google Scholar 

  38. Connolly JG, Mobbs BG. Clinical applications and value of receptor levels in treatment of prostate cancer. Prostate. 1984;5:477–83.

    Article  PubMed  CAS  Google Scholar 

  39. Pertschuk LP, Schaeffer H, Feldmn JG, Macchia RJ, Kim YD, Eisenberg K, Brithwaite LV, Axiotis CA, Prins G, Green GL. Immunostaining for prostate cancer androgen receptor in paraffin identified a subset of men with a poor prognosis. Lab Invest. 1995;73:302–5.

    PubMed  CAS  Google Scholar 

  40. Saidi MV, Barrack ER. Image analysis of androgen receptor immunostaining in metastatic prostate cancer. Heterogeneity as a predictor of response to hormonal therapy. Cancer. 1993;71:2574–80.

    Article  Google Scholar 

  41. McPhaul MJ. Mechanisms of prostate cancer progression to androgen independence. Best Pract Res Clin Endocrinol Metab. 2008;22:373–88.

    Article  PubMed  CAS  Google Scholar 

  42. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23:8253–61.

    Article  PubMed  CAS  Google Scholar 

  43. Li R, Wheeler T, Dai H, Frolov A, Thompson T, Ayala G. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol. 2004;28:928–34.

    Article  PubMed  Google Scholar 

  44. Inoue T, Segawa T, Shiraishi T, Yoshida T, Toda Y, Yamada T, Kinukawa N, Kinoshita H, Kamoto T, Ogawa O. Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology. 2005;66:332–7.

    Article  PubMed  Google Scholar 

  45. Inoue T, Segawa T, Shiraishi T, et al. Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology. 2005;66:332–7.

    Article  PubMed  Google Scholar 

  46. Bubendorf L, Tapia C, Gasser TC, Casella R, Grunder B, Moch H, et al. Ki67 labeling index in core needle biopsies independently predicts tumor-specific survival in prostate cancer. Hum Pathol. 1998;29:949–54.

    Article  PubMed  CAS  Google Scholar 

  47. Mucci NR, Rubin MA, Strawderman MS, Montie JE, Smith DC, Pienta KJ. Expression of nuclear antigen Ki-67 n prostate cancer needle biopsy and radical prostatectomy specimens. J Natl Cancer Inst. 2000;92:1941–2.

    Article  PubMed  CAS  Google Scholar 

  48. Pollack A, DeSilvio M, Khor LY, Li R, Al-Saleem TI, Hammond ME, et al. Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: radiation therapy oncology group trial 92–02. J Clin Oncol. 2004;22:2133–40.

    Article  PubMed  CAS  Google Scholar 

  49. Anand PK. Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol. 2010;3:405–8.

    Article  PubMed  Google Scholar 

  50. Nilsson J, Skog J, Nordstrand A, Baranov A, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603–7.

    Article  PubMed  CAS  Google Scholar 

  51. Adams JD, Soh HT. Perspectives on utilizing unique features of microfluidics technology for particle and cell sorting. JALA. 2009;14:331–40.

    PubMed  CAS  Google Scholar 

  52. Wang S, Owens GE, Tseng HR. Nano “fly paper” technology for the capture of circulating tumor cells. Methods Mol Biol. 2011;726:141–50.

    Article  PubMed  CAS  Google Scholar 

  53. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, Inserra EJ, Ulman M, Springer S, Nakamura Z, Moore AL, Tsukrov DI, Kempner ME, et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med. 2010;31:25ra23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Donovan M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Donovan, M.J., Cordon-Cardo, C. (2012). Predicting High-Risk Disease Using Tissue Biomarkers. In: Klotz, L. (eds) Active Surveillance for Localized Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-912-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-912-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-911-2

  • Online ISBN: 978-1-61779-912-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics