Skip to main content

Ghrelin Antagonism: A Potential Therapeutic Target for Addictive Behaviour Disorders

  • Chapter
  • First Online:
Ghrelin in Health and Disease

Abstract

Here we review the emerging evidence for a role of the central ghrelin signalling system in reward from food (i.e. a natural reward) as well as from alcohol and other drugs of abuse (i.e. artificial rewards). Ghrelin levels are high preprandially consistent with a role in hunger and meal initiation. The hypothalamic and brainstem circuits involved in energy balance are clearly important targets for ghrelin. However, ghrelin also activates a key reward circuit, the cholinergic-dopaminergic reward link, that is involved in motivated reward-driven behaviour. This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Conversely, ghrelin receptor (GHS-R1A) antagonists suppress reward from chemical drugs and also from rewarding foods, thereby decreasing their consumption. Variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased body mass index in alcohol-dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system is strongly implicated in reward from food as well as chemical drugs, thereby providing a potential therapeutic target for addictive behaviour disorders, including those associated with compulsive overeating, obesity as well as substance use disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lall S, Tung LYC, Ohlsson C, Jansson JO, Dickson SL. Growth hormone (GH)-independent stimulation of adiposity by GH secretagogues. Biochem Biophy Res Commun. 2001;280:132–8.

    Article  CAS  Google Scholar 

  2. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407: 908–13.

    Article  PubMed  Google Scholar 

  3. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50: 1714–9.

    Article  PubMed  CAS  Google Scholar 

  4. Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106:11318–23.

    Article  PubMed  CAS  Google Scholar 

  5. Leggio L. Role of the ghrelin system in alcoholism: acting on the growth hormone secretagogue receptor to treat alcohol-related disorders. Drug News Perspect. 2010;23:157–66.

    Article  PubMed  CAS  Google Scholar 

  6. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    Article  PubMed  CAS  Google Scholar 

  7. Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res. 1997;48(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  8. Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    Article  PubMed  CAS  Google Scholar 

  9. Robinson TE, Berridge KC. The neural basis of drug craving - an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91.

    Article  PubMed  CAS  Google Scholar 

  10. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987; 94:469–92.

    Article  PubMed  CAS  Google Scholar 

  11. Engel JA, Fahlke C, Hulthe P, et al. Biochemical and behavioral evidence for an interaction between ethanol and calcium-channel antagonists. Alcohol Alcohol. 1988;23:A13.

    Google Scholar 

  12. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28:309–69.

    Article  PubMed  CAS  Google Scholar 

  13. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    Article  PubMed  CAS  Google Scholar 

  14. Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 2006;11:45–54.

    Article  PubMed  CAS  Google Scholar 

  15. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    Article  PubMed  CAS  Google Scholar 

  16. Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116: 3229–39.

    Article  PubMed  CAS  Google Scholar 

  17. Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.

    Article  PubMed  CAS  Google Scholar 

  18. Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–7.

    Article  PubMed  CAS  Google Scholar 

  19. Volkow ND, Wang GJ, Fowler JS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996;20:1594–8.

    Article  PubMed  CAS  Google Scholar 

  20. Shinohara M, Mizushima H, Hirano M, et al. Eating disorders with binge-eating behaviour are associated with the s allele of the 3′-UTR VNTR polymorphism of the dopamine transporter gene. J Psychiatry Neurosci. 2004;29:134–7.

    PubMed  Google Scholar 

  21. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  22. Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol. 2008;13:358–63.

    Article  PubMed  CAS  Google Scholar 

  23. Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict Biol. 2010;16:82–91.

    Article  Google Scholar 

  24. Quarta D, Di Francesco C, Melotto S, Mangiarini L, Heidbreder C, Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int. 2009;54:89–94.

    Article  PubMed  CAS  Google Scholar 

  25. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    Article  PubMed  CAS  Google Scholar 

  26. Larsson A, Engel JA. Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev. 2004;27:713–20.

    Article  PubMed  CAS  Google Scholar 

  27. Rada PV, Mark GP, Yeomans JJ, Hoebel BG. Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking. Pharmacol Biochem Behav. 2000;65: 375–9.

    Article  PubMed  CAS  Google Scholar 

  28. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37: 475–524.

    Article  PubMed  CAS  Google Scholar 

  29. Butcher LL, Woolf NJ. Cholinergic neurons and networks revisited. In: Paxinos G, editor. The rat nervous system. 3rd ed. Amsterdam: Elsevier; 2003. p. 1257–68.

    Google Scholar 

  30. Yeomans JS, Mathur A, Tampakeras M. Rewarding brain-stimulation - role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci. 1993;107:1077–87.

    Article  PubMed  CAS  Google Scholar 

  31. Lanca AJ, Adamson KL, Coen KM, Chow BLC, Corrigall WA. The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience. 2000;96:735–42.

    Article  PubMed  CAS  Google Scholar 

  32. Larsson A, Edstrom L, Svensson L, Soderpalm B, Engel JA. Voluntary ethanol intake increases extracellular acetylcholine levels in the ventral tegmental area in the rat. Alcohol Alcohol. 2005;40:349–58.

    PubMed  CAS  Google Scholar 

  33. Dickson SL, Hrabovszky E, Hansson C, et al. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Neuroscience. 2010;171: 1180–6.

    Article  PubMed  CAS  Google Scholar 

  34. Jerlhag E, Egecioglu E, Dickson SL, Svensson L, Engel JA. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. Eur Neuropsychopharmacol. 2008;18:508–18.

    Article  PubMed  CAS  Google Scholar 

  35. Landgren S, Engel JA, Andersson ME, et al. Association of nAChR gene haplotypes with heavy alcohol use and body mass. Brain Res. 2009;1305:S72–9.

    Article  PubMed  CAS  Google Scholar 

  36. Taber MT, Fibiger HC. Feeding-evoked dopamine release in the nucleus accumbens: regulation by glutamatergic mechanisms. Neuroscience. 1997;76:1105–12.

    Article  PubMed  CAS  Google Scholar 

  37. Toshinai K, Date Y, Murakami N, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144:1506–12.

    Article  PubMed  Google Scholar 

  38. Perello M, Sakata I, Birnbaum S, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry. 2010;67:880–6.

    Article  PubMed  CAS  Google Scholar 

  39. Garbutt JC, West SL, Carey TS, Lohr KN, Crews FT. Pharmacological treatment of alcohol dependence - a review of the evidence. JAMA. 1999;281:1318–25.

    Article  PubMed  CAS  Google Scholar 

  40. Schneider ER, Darby R, Leibowitz SF, Hoebel BG. Orexin, but not ghrelin, injected in the lateral hypothalamus increases alcohol intake in alcohol-drinking rats. Alcohol Clin Exp Res. 2007;31:199A.

    Article  Google Scholar 

  41. Calissendorff J, Danielsson O, Brismar K, Rojdmark S. Inhibitory effect of alcohol on ghrelin secretion in normal man. Eur J Endocrinol. 2005;152:743–7.

    Article  PubMed  CAS  Google Scholar 

  42. Calissendorff J, Danielsson O, Brismar K, Rojdmark S. Alcohol ingestion does not affect serum levels of peptide YY but decreases both total and octanoylated ghrelin levels in healthy subjects. Metabolism. 2006;55:1625–9.

    Article  PubMed  CAS  Google Scholar 

  43. Zimmermann US, Buchmann A, Steffin B, Dieterle C, Uhr M. Alcohol administration acutely inhibits ghrelin secretion in an experiment involving psychosocial stress. Addict Biol. 2007;12: 17–21.

    Article  PubMed  CAS  Google Scholar 

  44. Addolorato G, Capristo E, Leggio L, et al. Relationship between ghrelin levels, nutritional status and craving in current alcoholics. Alcohol Clin Exp Res. 2006;30:140A.

    Article  Google Scholar 

  45. Badaoui A, De Saeger C, Duchemin J, Gihousse D, de Timary P, Starkel P. Alcohol dependence is associated with reduced plasma and fundic ghrelin levels. Eur J Clin Invest. 2008;38: 397–403.

    Article  PubMed  CAS  Google Scholar 

  46. Kraus T, Schanze A, Groschl M, et al. Ghrelin levels are increased in alcoholism. Alcohol Clin Exp Res. 2005;29:2154–7.

    Article  PubMed  CAS  Google Scholar 

  47. Kim DJ, Yoon SJ, Choi B, et al. Increased fasting plasma ghrelin levels during alcohol abstinence. Alcohol Alcohol. 2005;40:76–9.

    PubMed  CAS  Google Scholar 

  48. Wurst FM, Graf I, Ehrenthal HD, et al. Gender differences for ghrelin levels in alcohol-dependent patients and differences between alcoholics and healthy controls. Alcohol Clin Exp Res. 2007;31:2006–11.

    Article  PubMed  CAS  Google Scholar 

  49. Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol. 2010;45:341–7 [Epub ahead of print].

    Article  PubMed  Google Scholar 

  50. Ando T, Komaki G, Naruo T, et al. Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am J Med Genet B Neuropsychiatr Genet. 2006;141B: 929–34.

    Article  PubMed  CAS  Google Scholar 

  51. Miyasaka K, Hosoya H, Sekime A, et al. Association of ghrelin receptor gene polymorphism (171 T/C), not of CCK-a receptor (81A/G,-128 G/T) or beta3 adrenalin receptor (Try64Arg) gene polymorphism, with bulimia nervosa in a Japanese population. Gastroenterology. 2006; 130:A452.

    Google Scholar 

  52. Baessler A, Hasinoff MJ, Fischer M, et al. Genetic linkage and association of the growth hormone secretagogue receptor (Ghrelin receptor) gene in human obesity. Diabetes. 2005;54: 259–67.

    Article  PubMed  CAS  Google Scholar 

  53. Landgren S, Jerlhag E, Zetterberg H, et al. Association of pro-ghrelin and GHS-R1A gene polymorphisms and haplotypes with heavy alcohol use and body mass. Alcohol Clin Exp Res. 2008;32:2054–61.

    Article  PubMed  CAS  Google Scholar 

  54. Knop J, Penick EC, Nickel EJ, et al. Paternal alcoholism predicts the occurrence but not the remission of alcoholic drinking: a 40-year follow-up. Acta Psychiatr Scand. 2007;116: 386–93.

    Article  PubMed  CAS  Google Scholar 

  55. Cloninger CR, Sigvardsson S, Bohman M. Childhood personality predicts alcohol-abuse in young-adults. Alcohol Clin Exp Res. 1988;12:494–505.

    Article  PubMed  CAS  Google Scholar 

  56. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

    Article  PubMed  CAS  Google Scholar 

  57. Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–9.

    Article  PubMed  CAS  Google Scholar 

  58. Egecioglu E, Jerlhag E, Skibicka S, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol. 2010;15:304–11.

    Article  PubMed  CAS  Google Scholar 

  59. Disse E, Bussier AL, Veyrat-Durebex C, et al. Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiol Behav. 2010;101:277–81.

    Article  PubMed  CAS  Google Scholar 

  60. Skibicka KP, Hansson C, Egecioglu E, Dickson SL. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol. 2010;17:95–107.

    Article  Google Scholar 

  61. Halem HA, Taylor JE, Dong JZ, et al. Novel analogs of ghrelin: physiological and clinical implications. Eur J Endocrinol. 2004;151:S71–5.

    Article  PubMed  CAS  Google Scholar 

  62. Dichiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA. 1988;85:5274–8.

    Article  CAS  Google Scholar 

  63. Koob GF, Bloom FE. Cellular and molecular mechanisms of drug-dependence. Science. 1988;242:715–23.

    Article  PubMed  CAS  Google Scholar 

  64. Wellman PJ, Davis KW, Nation JR. Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept. 2005;125:151–4.

    Article  PubMed  CAS  Google Scholar 

  65. Davis KW, Wellman PJ, Clifford PS. Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept. 2007;140:148–52.

    Article  PubMed  CAS  Google Scholar 

  66. Tessari M, Catalano A, Pellitteri M, et al. Correlation between serum ghrelin levels and cocaine-seeking behaviour triggered by cocaine-associated conditioned stimuli in rats. Addict Biol. 2007;12:22–9.

    Article  PubMed  CAS  Google Scholar 

  67. Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference. Psychopharmacology. 2010;211:415–22.

    Article  PubMed  CAS  Google Scholar 

  68. Gualillo O, Caminos JE, Nogueiras R, et al. Effect of food restriction on ghrelin in normal-cycling female rats and in pregnancy. Obes Res. 2002;10:682–7.

    Article  PubMed  CAS  Google Scholar 

  69. Carroll ME, France CP, Meisch RA. Food-deprivation increases oral and intravenous drug intake in rats. Science. 1979;205:319–21.

    Article  PubMed  CAS  Google Scholar 

  70. Carr KD. Augmentation of drug reward by chronic food restriction: Behavioral evidence and underlying mechanisms. Physiol Behav. 2002;76:353–64.

    Article  PubMed  CAS  Google Scholar 

  71. Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor - identification of a potent inverse agonist. Mol Endocrinol. 2003;17:2201–10.

    Article  PubMed  CAS  Google Scholar 

  72. Holst B, Holliday ND, Bach A, Elling CE, Cox HM, Schwartz TW. Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem. 2004;279:53806–17.

    Article  PubMed  CAS  Google Scholar 

  73. Esler WP, Rudolph J, Claus TH, et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology. 2007;148: 5175–85.

    Article  PubMed  CAS  Google Scholar 

  74. Asakawa A, Inui A, Kaga T, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut. 2003;52:947–52.

    Article  PubMed  CAS  Google Scholar 

  75. Demange L, Boeglin D, Moulin A, et al. Synthesis and pharmacological in vitro and in vivo evaluations of novel triazole derivatives as ligands of the ghrelin receptor. 1. J Med Chem. 2007;50:1939–57.

    Article  PubMed  CAS  Google Scholar 

  76. Salomé N, Haage D, Perrissoud D, et al. Anorexigenic and electrophysiological actions of novel ghrelin receptor (GHS-R1A) antagonists in rats. Eur J Pharmacol. 2009;612:167–73.

    Article  PubMed  Google Scholar 

  77. Salomé N, Hansson C, Taube M, et al. On the central mechanism underlying ghrelin’s chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist. J Neuroendocrinol. 2009;21:777–85.

    Article  PubMed  Google Scholar 

  78. Jiang H, Betancourt L, Smith RG. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol. 2006;20:1772–85.

    Article  PubMed  CAS  Google Scholar 

  79. Dyr W, Mcbride WJ, Lumeng L, Li TK, Murphy JM. Effects of D1 and D2 dopamine receptor agents on ethanol-consumption in the high-alcohol-drinking (Had) line of rats. Alcohol. 1993;10:207–12.

    Article  PubMed  CAS  Google Scholar 

  80. El-Ghundi M, George SR, Drago J, et al. Disruption of dopamine D-1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol. 1998;353:149–58.

    Article  PubMed  CAS  Google Scholar 

  81. Davis C, Woodside DB. Sensitivity to the rewarding effects of food and exercise in the eating disorders. Compr Psychiatry. 2002;43:189–94.

    Article  PubMed  Google Scholar 

  82. Grigson PS. Like drugs for chocolate: separate rewards modulated by common mechanisms? Physiol Behav. 2002;76:345–6.

    Article  CAS  Google Scholar 

  83. Holden C. Compulsive behaviors: “Behavioral” addictions: do they exist? Science. 2001;294: 980–2.

    Article  PubMed  CAS  Google Scholar 

  84. Potenza MN, Steinberg MA, Skudlarski P, et al. Gambling urges in pathological gambling - a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2003;60:828–36.

    Article  PubMed  Google Scholar 

  85. Volkow ND, Wang GJ, Maynard L, et al. Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord. 2003;33:136–42.

    Article  PubMed  Google Scholar 

  86. Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest. 2003;111:1444–51.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the EU (FP7-HEALTH-2009–241592, FP7-KBBE-2009-3-245009), Swedish Medical Research Council (K2007-54X-20328–013, K2006-21X-04247-33-3), ALF/LUA grants from the Sahlgrenska Hospital Göteborg (SU7601, 7136, 7341), the Alcohol Research Council of the Swedish Alcohol Retailing Monopoly, The Swedish brain foundation, the foundations of Wilhelm and Martina Lundgren, Knut and Alice Wallenberg, The Adlerbert Research, Thuring’s, Längmanska art, Torsten and Ragnar Söderberg, Magnus Bergvall foundation, The Swedish Society of Medicine and the Swedish Foundation for Strategic Research to Sahlgrenska Center for Cardiovascular and Metabolic Research (A305-188). Thanks to Dr. Anders Friberg for help in preparing figures and for proofreading the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne L. Dickson B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jerlhag, E., Egecioglu, E., Engel, J., Dickson, S.L. (2012). Ghrelin Antagonism: A Potential Therapeutic Target for Addictive Behaviour Disorders. In: Smith, R., Thorner, M. (eds) Ghrelin in Health and Disease. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-903-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-903-7_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-902-0

  • Online ISBN: 978-1-61779-903-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics