Skip to main content

Novel Zeaxanthin-Producing Bacteria Isolated from a Radioactive Hot Spring Water

  • Protocol
  • First Online:
Microbial Carotenoids from Bacteria and Microalgae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 892))

Abstract

Zeaxanthin is a powerful antioxidant that is widely found in vegetables and fruits. Epidemiological evidences suggest that increasing the consumption of zeaxanthin in the diet is associated with a lower risk of age-related macular degeneration, helps prevent glaucoma and cataracts, and supports normal eye health. Zeaxanthin is a promising nutraceutical with many applications in the feed, food, and pharmaceutical industries. Currently, the commercial production of zeaxanthin is still dependant on synthetic routes with limitation for the biological one. Nevertheless, the biotechnological production of zeaxanthin is emerging due to its safety, potential large-scale production, and consumers’ demand and preference for natural additives. Using a rapid screening method based on 16S rRNA gene and effective high-performance liquid chromatography (HPLC)-Diodearray-MS methods for carotenoids’ analysis, we isolated effective zeaxanthin-producing bacteria (strain TDMA-5T and -16T) that belong to the family Sphingobacteriaceae and Sphingomonadaceae, respectively. In this chapter, we provide a detailed description of the HPLC-Diodearray-MS methods used for rapid analysis and identification of the carotenoids produced by both strains. In addition, the polyphasic taxonomic analysis of both novel strains and the description of a novel species and genus are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sommerburg O, Keunen JEE, Bird AC, van Kuijk F (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82:907–910

    Article  PubMed  CAS  Google Scholar 

  2. Nelis HJ, Deleenheer AP (1991) Microbial sources of carotenoid-pigments used in foods and feeds. J Appl Bacteriol 70:181–191

    Article  CAS  Google Scholar 

  3. Handelman GJ, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL et al (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agric Food Chem 47:4888–4893

    Article  PubMed  CAS  Google Scholar 

  4. Humphries JM, Khachik F (2003) Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agric Food Chem 51:1322–1327

    Article  PubMed  CAS  Google Scholar 

  5. Hadden WL, Watkins RH, Levy LW, Regalado E, Rivadeneira DM, van Breemen RB et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47:4189–4194

    Article  PubMed  CAS  Google Scholar 

  6. Perry A, Rasmussen H, Johnson EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Comp Anal 22:9–15

    Article  CAS  Google Scholar 

  7. Asker D, Beppu T, Ueda K (2007) Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57:837–843

    Article  PubMed  CAS  Google Scholar 

  8. Asker D, Beppu T, Ueda K (2007) Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30:291–296

    Article  PubMed  CAS  Google Scholar 

  9. Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I et al (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53:231–238

    Article  PubMed  CAS  Google Scholar 

  10. Hoshino T, Ojima K, Setoguchi Y (2004) Production of zeaxanthin by recombinant Phaffia rhodozyma strain. PCT Int Appl US 20030923

    Google Scholar 

  11. Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    Article  PubMed  CAS  Google Scholar 

  12. Dufossé L (ed) (2009) Microbial and microalgal carotenoids as colourants and supplements, vol 5. Birkhäuser Verlag Basel, Basel·Boston·Berlin

    Google Scholar 

  13. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:S1448–S1461

    Google Scholar 

  14. Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522s–527s

    PubMed  CAS  Google Scholar 

  15. Schweitzer D, Jentsch S, Bohm V, Hammer M, Dawczynski J (2010) Suppelementation with lutein and zeaxanthin – a possible protection against age-related macular degeneration. Spektrum Augenheilkd 24:242–247

    Article  Google Scholar 

  16. Gale CR, Hall NF, Phillips DIW, Martyn CN (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 44:2461–2465

    Article  PubMed  Google Scholar 

  17. Mares-Perlman JA, Fisher AI, Klein R, Block G, Millen AE, Wright JD (2001) Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the Third National Health and Nutrition Examination Survey. Am J Epidemiol 153:424–432

    Article  PubMed  CAS  Google Scholar 

  18. Robman L, Vu H, Hodge A, Tikellis G, Dimitrov P, McCarty C et al (2007) Dietary lutein, zeaxanthin, and fats and the progression of age-related macular degeneration. Can J Ophthalmol 42:720–726

    Article  PubMed  Google Scholar 

  19. Moeller SM, Voland R, Tinker L, Blodi BA, Klein ML, Gehrs KM et al (2008) Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the Age-Related Eye Disease study, an ancillary study of the women’s health initiative. Arch Ophthalmol 126:354–364

    Article  PubMed  Google Scholar 

  20. Trumbo PR, Ellwood KC (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 84:971–974

    PubMed  CAS  Google Scholar 

  21. Keri L, Carpenter H, Veen C, Hird R, Dennis IF, Ding T et al (1997) The carotenoids β-carotene, canthaxanthin and zeaxanthin inhibit macrophage-mediated LDL oxidation. FEBS Lett 401:262–266

    Article  Google Scholar 

  22. Nishino H, Tokuda H, Murakoshi M, Satomi Y, Masuda M, Onozuka M et al (2000) Cancer prevention by natural carotenoids. Biofactors 13:89–94

    Article  PubMed  CAS  Google Scholar 

  23. Bosma TL, Dole JM, Maness NO (2003) Optimizing marigold (Tagetes erecta L.) petal and pigment yield. Crop Sci 43:2118–2124

    Article  Google Scholar 

  24. Stankovic I (2004) Zeaxanthin chemical and technical assessment (CTA) in 63rd JECFA, ed FAO

    Google Scholar 

  25. Gierhart DL (1994) Production of zeaxanthin and zeaxanthin-containing compositions. Appl Food Biotechnol, Inc. U.S. 5,308,759

    Google Scholar 

  26. Kametani K, Matsumura T (1983) Determination of 238U, 234U, 226Ra and 228Ra in spring waters of sanin district. Radioisotopes 32:18–21

    Article  PubMed  CAS  Google Scholar 

  27. Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392

    Article  PubMed  CAS  Google Scholar 

  28. Asker D, Beppu T, Ueda K (2007) Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57:1435–1441

    Article  PubMed  CAS  Google Scholar 

  29. Asker D, Beppu T, Ueda K (2008) Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58:601–606

    Article  PubMed  CAS  Google Scholar 

  30. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177

    Article  PubMed  CAS  Google Scholar 

  31. Ntougias S, Fasseas C, Zervakis GI (2007) Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 57:398–404

    Article  PubMed  CAS  Google Scholar 

  32. Kim MK, Na JR, Cho DH, Soung NK, Yang DC (2007) Parapedobacter koreensis gen. nov., sp. nov. Int J Syst Evol Microbiol 57:1336–1341

    Article  PubMed  CAS  Google Scholar 

  33. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov. glucosenonfermenting gram-negative rods in CDC groups IIk-2 and IIb. Int J Syst Bacteriol 33:580–598

    Article  Google Scholar 

  34. Shivaji S, Ray MK, Rao NS, Saisree L, Jagannadham MV, Kumar GS et al (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106

    Article  Google Scholar 

  35. Takeuchi M, Yokota A (1992) Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 38:465–482

    Article  Google Scholar 

  36. Kim KH, Ten LN, Liu QM, Im WT, Lee ST (2006) Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56:2031–2036

    Article  PubMed  CAS  Google Scholar 

  37. Margesin R, Sproer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296

    Article  PubMed  CAS  Google Scholar 

  38. Shivaji S, Chaturvedi P, Reddy GS, Suresh K (2005) Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088

    Article  PubMed  CAS  Google Scholar 

  39. Vanparys B, Heylen K, Lebbe L, De Vos P (2005) Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1315–1318

    Article  PubMed  CAS  Google Scholar 

  40. Gallego V, Garcia MT, Ventosa A (2006) Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 56:1853–1858

    Article  PubMed  CAS  Google Scholar 

  41. Hwang CY, Choi DH, Cho BC (2006) Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 56:1831–1836

    Article  PubMed  CAS  Google Scholar 

  42. Ten LN, Liu QM, Im WT, Lee M, Yang DC, Lee ST (2006) Pedobacter ginsengisoli sp. nov., a DNase-producing bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2565–2570

    Article  PubMed  CAS  Google Scholar 

  43. Yoon JH, Lee MH, Kang SJ, Park SY, Oh TK (2006) Pedobacter sandarakinus sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:1273–1277

    Article  PubMed  CAS  Google Scholar 

  44. Kwon SW, Kim BY, Lee KH, Jang KY, Seok SJ, Kwon JS et al (2007) Pedobacter suwonensis sp. nov., isolated from the rhizosphere of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 57:480–484

    Article  PubMed  CAS  Google Scholar 

  45. Yoon MH, Ten LN, Im WT, Lee ST (2007) Pedobacter panaciterrae sp. nov., isolated from soil in South Korea. Int J Syst Evol Microbiol 57:381–386

    Article  PubMed  CAS  Google Scholar 

  46. Yabuuchi E, Kosako Y (2005) Family Sphingomonadaceae Kosako, Yabuuchi, Naka, Fijiwara and Kobayashi 2000b, 1953VP. In: Brenner DJ, Kreig NP, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2, the Proteobacteria, part C, The Betaproteobacteria, the Deltaproteobacteria and the Epsilonproteobacteria. Springer, New York

    Google Scholar 

  47. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  48. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H et al (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496

    Article  PubMed  CAS  Google Scholar 

  49. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    PubMed  CAS  Google Scholar 

  50. Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49

    Article  PubMed  CAS  Google Scholar 

  51. Zablotowicz RM, Leung KT, Alber T, Cassidy MB, Trevors JT, Lee H et al (1999) Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Can J Microbiol 45:840–848

    PubMed  CAS  Google Scholar 

  52. Zipper C, Nickel K, Angst W, Kohler HP (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322

    PubMed  CAS  Google Scholar 

  53. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  PubMed  CAS  Google Scholar 

  54. Silva C, Cabral JM, van Keulen F (2004) Isolation of a beta-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 26:257–262

    Article  PubMed  CAS  Google Scholar 

  55. Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin – a review. Compr Rev Food Sci Food Saf 7:29–49

    Article  CAS  Google Scholar 

  56. Jenkins CL, Andrewes AG, McQuade TJ, Starr MP (1979) The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4

    Article  CAS  Google Scholar 

  57. Rowe NJ, Tunstall J, Galbraith L, Wilkinson SG (2000) Lipid composition and taxonomy of [Pseudomonas] echinoides: transfer to the genus Sphingomonas. Microbiology 146:3007–3012

    PubMed  CAS  Google Scholar 

  58. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  PubMed  CAS  Google Scholar 

  59. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  60. Busse HJ, Hauser E, Kämpfer P (2005) Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569

    Article  PubMed  CAS  Google Scholar 

  61. Busse HJ, Kämpfer P, Denner EB (1999) Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23:242–251

    Article  PubMed  CAS  Google Scholar 

  62. Yang DC, Im WT, Kim MK, Ohta H, Lee ST (2006) Sphingomonas soli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in the alpha-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 56:703–707

    Article  PubMed  CAS  Google Scholar 

  63. Takeuchi M, Hiraishi A (2001) Taxonomic significance of 2-hydroxy fatty acid profiles of the species in the genus Sphingomonas and related taxa. IFO Res Commun 20:72–82

    Google Scholar 

  64. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354

    PubMed  CAS  Google Scholar 

  65. Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ (1997) Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583

    Article  PubMed  Google Scholar 

  66. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  67. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR et al (eds) (1981) American Society for Microbiology, Washington, DC

    Google Scholar 

  68. Norris JR, Ribbons DW, Varma AK (1985) Methods in microbiology. Academic, London

    Google Scholar 

  69. Cowan ST, Steel KJ (1993) Manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, London

    Google Scholar 

  70. Collins MD (1994) Isoprenoid quinones. In: O’Donnell MGAG (ed) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–310

    Google Scholar 

  71. Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zahringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110

    Article  PubMed  CAS  Google Scholar 

  72. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  73. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine  +  cytosine of DNA. J Chromatogr 479:297–306

    Article  PubMed  CAS  Google Scholar 

  74. Chen F, Li HB, Wong RN, Ji B, Jiang Y (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J Chromatogr A 1064:183–186

    Article  PubMed  CAS  Google Scholar 

  75. Liao WL, Nur-E-Borhan SA, Okada S, Matsui T, Yamaguchi K (1993) Pigmentation of cultured black tiger prawn by feeding with a Spirulina supplemented diet. Nippon Suisan Gakkaishi/Bull Japan Soc Sci Fisher 59:165–169

    Article  CAS  Google Scholar 

  76. Murata N, Sato N, Omata T, Kuwabara T (1981) Separation and characterization of thylakoid and cell envelope of the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 22:855–866

    CAS  Google Scholar 

  77. Withers NW, Alberte RS, Lewin RA, Thornber JP, Britton G, Goodwin TW (1978) Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga. Proc Natl Acad Sci USA 75:2301–2305

    Article  PubMed  CAS  Google Scholar 

  78. Liao HH, Medwid RD, Heefner DL, Sniff KS, Hassler RA, Yarus MJ (1995) Carotenoid producing culture using Nespongiococcum excentricum. U.S. patent 5,437,997

    Google Scholar 

  79. Jin ES, Feth B, Melis A (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81:115–124

    Article  PubMed  CAS  Google Scholar 

  80. Andrew Y, Britton G (1990) Photobleaching in the unicellular green alga Dunaliella parva 19/9. Photosynth Res 25:129–136

    Article  Google Scholar 

  81. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene rich globules from Dunaliella bardawil (chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  82. Goodwin TW (1976) Distribution of carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, New York

    Google Scholar 

  83. Palermo JA, Gros EG, Seldes AM (1991) Carotenoids from three red algae of the Corallinaceae. Phytochemistry 30:2983–2986

    Article  CAS  Google Scholar 

  84. Shepherd D, Dasek J, Suzanne M, Carels C (1976) Production of zeaxanthin. U.S. patent 3,951,743

    Google Scholar 

  85. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS (2004) Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279:49447–49454

    Article  PubMed  CAS  Google Scholar 

  86. Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66:64–72

    Article  PubMed  CAS  Google Scholar 

  87. Hundle BS, O’Brien DA, Beyer P, Kleinig H, Hearst JE (1993) In vitro expression and activity of lycopene cyclase and beta-carotene hydroxylase from Erwinia herbicola. FEBS Lett 315:329–334

    Article  PubMed  CAS  Google Scholar 

  88. McDermott JC, Britton G, Goodwin TW (1973) Carotenoid biosynthesis in a Flavobacterium sp.: stereochemistry of hydrogen elimination in the desaturation of phytoene to lycopene, rubixanthin and zeaxanthin. Biochem J 134:1115–1117

    PubMed  CAS  Google Scholar 

  89. Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids beta-carotene and zeaxanthin. Biotechnol Lett 21:791–795

    Article  CAS  Google Scholar 

  90. Denner EB, Kämpfer P, Busse HJ, Moore ER (1999) Reclassification of Pseudomonas ­echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol 49:1103–1109

    Article  PubMed  CAS  Google Scholar 

  91. Yoon JH, Lee MH, Kang SJ, Lee SY, Oh TK (2006) Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2165–2169

    Article  PubMed  CAS  Google Scholar 

  92. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498

    PubMed  CAS  Google Scholar 

  93. Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K et al (2002) Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087

    Article  PubMed  CAS  Google Scholar 

  94. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalal Asker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Asker, D., Awad, T.S., Beppu, T., Ueda, K. (2012). Novel Zeaxanthin-Producing Bacteria Isolated from a Radioactive Hot Spring Water. In: Barredo, JL. (eds) Microbial Carotenoids from Bacteria and Microalgae. Methods in Molecular Biology, vol 892. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-879-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-879-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-878-8

  • Online ISBN: 978-1-61779-879-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics