Skip to main content

Thymic Transplantation in Pig-to-Nonhuman Primates for the Induction of Tolerance Across Xenogeneic Barriers

  • Protocol
  • First Online:
Xenotransplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 885))

Abstract

With the advent of knockout pigs for α1,3-galactosyltransferease (GalT-KO, which lack a cell-surface antigen to which humans have preformed antibodies), investigators have extended the survival of life-supporting xenorenal grafts. However, despite these increases, nonhuman primates transplanted with GalT-KO renal grafts are susceptible to anti-donor T-cell responses that are strong or stronger than allogeneic responses. In order to prevent rejection, recipients must be subjected to morbidly high levels of immunosuppression. For these reasons, our laboratory has attempted to develop novel methods of xenogeneic tolerance using vascularized porcine thymic grafts in order to reteach the recipient’s immune system to accept the xenogeneic organ as self. These strategies, largely developed by Dr. Kazuhiko Yamada, involve the co-transplantation of a vascularized donor thymus with a kidney. This has been successfully done in two ways. The first method involves the preparation of a composite tissue “thymokidney” and the second utilizes the transplantation of an isolated vascularized thymic lobe. Both strategies involve the transplantation of fully vascularized thymic tissue at the time of xenotransplantation, a fact which is crucial for function of the thymic tissue immediately after xenografting and reeducation of recipient T-cells. These strategies have successfully induced tolerance across fully allogeneic models in miniature swine and prolonged graft survival in our pig-to-baboon model of life-supporting xenotransplantation to greater than 80 days with in vitro evidence of donor-specific unresponsiveness. Although it is too early for the development of clinical renal xenotransplantation protocols, this chapter describes the authors’ unique experience with one of the most promising preclinical large-animal models of xenotransplantation. Furthermore, understanding the importance and measurement of T-cell responses in xenotransplantation is contingent upon a functional knowledge of these procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper DKC, Ye Y, Rolf LL Jr, Zuhdi N (1991) In: Cooper DKC, Kemp E, Reemtsma K, White DJG (eds) Xenotransplantation: the transplantation of organs and tissues between species. Heidelberg, Springer

    Google Scholar 

  2. Cooper DK, Gollackner B, Sachs DH (2002) Will the pig solve the transplantation backlog? Annu Rev Med 53:133–147

    Article  PubMed  CAS  Google Scholar 

  3. Yamada K, Griesemer A, Okumi M (2008) Pigs as xenogeneic donors. Transplant Rev 19:164–177

    Article  Google Scholar 

  4. Sachs DH, Galli C (2009) Genetic manipulation in pigs. Curr Opin Organ Transplant 14:148–153

    Article  PubMed  Google Scholar 

  5. Cooper DK, Good AH, Koren E et al (1993) Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1:198–205

    Article  PubMed  CAS  Google Scholar 

  6. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1–3Gal epitope in primates. Proc Natl Acad Sci USA 84:1369–1373

    Article  PubMed  CAS  Google Scholar 

  7. Galili U (1993) Evolution and pathophysiology of the human natural anti-.alpha.-galactosyl IgG (anti-Gal) antibody. Springer Semin Immunopathol 15:155–171

    Article  PubMed  CAS  Google Scholar 

  8. Galili U, Gregory CR, Morris RE (1996) New World monkeys as a primate model for xenografts in the absence of anti-Gal. Transplant Proc 28:567–568

    PubMed  CAS  Google Scholar 

  9. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA (1988) Man, apes, and old world monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263: 17755–17762

    PubMed  CAS  Google Scholar 

  10. Phelps CJ, Koike C, Vaught TD et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  PubMed  CAS  Google Scholar 

  11. Kolber-Simonds D, Lai L, Watt SR et al (2004) Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci USA 101:7335–7340

    Article  PubMed  CAS  Google Scholar 

  12. Lai L, Kolber-Simonds D, Park K et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  PubMed  CAS  Google Scholar 

  13. Mezrich JD, Haller GW, Arn JS et al (2003) Histocompatible miniature swine: an inbred large-animal model. Transplantation 75:904–907

    Article  PubMed  Google Scholar 

  14. Dor FJ, Tseng YL, Cheng J et al (2004) Alpha1,3-galactosyltransferase gene-knockout miniature swine produce natural cytotoxic anti-Gal antibodies. Transplantation 78:15–20

    Article  PubMed  CAS  Google Scholar 

  15. Yamada K, Yazawa K, Shimizu A et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34

    Article  PubMed  CAS  Google Scholar 

  16. Moses RD, Pierson RN, Winn HJ, Auchincloss H Jr (1990) Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse. J Exp Med 172:567–575

    Article  PubMed  CAS  Google Scholar 

  17. Deschamps JY, Roux FA, Sai P, Gouin E (2005) History of xenotransplantation. Xenotrans­plantation 12:91–109

    Article  PubMed  Google Scholar 

  18. Yamada K, Sachs DH, DerSimonian H (1995) Human anti-porcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol 155:5249–5256

    PubMed  CAS  Google Scholar 

  19. Murray AG, Khodadoust MM, Pober JS, Bothwell AL (1994) Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity 1:57–63

    Article  PubMed  CAS  Google Scholar 

  20. Cozzi E, White DJ (1995) The generation of transgenic pigs as potential organ donors for humans. Nat Med 1:964–966

    Article  PubMed  CAS  Google Scholar 

  21. Mollnes TE, Fiane AE (2003) Perspectives on complement in xenotransplantation. Mol Immunol 40:135–143

    Article  PubMed  CAS  Google Scholar 

  22. Adams DH, Kadner A, Chen RH, Farivar RS (2001) Human membrane cofactor protein (MCP, CD 46) protects transgenic pig hearts from hyperacute rejection in primates. Xenotransplantation 8:36–40

    Article  PubMed  CAS  Google Scholar 

  23. Buhler L, Yamada K, Kitamura H et al (2001) Pig kidney transplantation in baboons: anti-Gal(alpha)1-3Gal IgM alone is associated with acute humoral xenograft rejection and disseminated intravascular coagulation. Transplantation 72:1743–1752

    Article  PubMed  CAS  Google Scholar 

  24. Chen G, Qian H, Starzl T et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11:1295–1298

    Article  PubMed  CAS  Google Scholar 

  25. Sandberg JO, Benda B, Lycke N, Korsgren O et al (1997) Xenograft rejection of porcine islet-like cell clusters in normal, interferon-gamma, and interferon-gamma receptor deficient mice. Transplantation 63:1446–1452

    Article  PubMed  CAS  Google Scholar 

  26. Benda B, Karlsson-Parra A, Ridderstad A, Korsgren O (1996) Xenograft rejection of porcine islet-like cell clusters in immunoglobulin- or Fc-receptor gamma-deficient mice. Transplantation 62:1207–1211

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Y, Swenson K, Sergio JJ et al (1996) Skin graft tolerance across a discordant xenogeneic barrier. Nat Med 2:1211–1216

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Barbosa JI, ZhaoY BR et al (2001) Enhanced CD4 reconstitution by grafting neonatal porcine tissue in alternative locations is associated with donor-specific tolerance and suppression of preexisting xenoreactive T cells. Transplantation 72:1223–1231

    Article  PubMed  CAS  Google Scholar 

  29. Nikolic B, Gardner JP, Scadden DT et al (1999) Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC. J Immunol 162:3402–3407

    PubMed  CAS  Google Scholar 

  30. Haller GW, Esnaola N, Yamada K et al (1999) Thymic transplantation across an MHC class I barrier in swine. J Immunol 163:3785–3792

    PubMed  CAS  Google Scholar 

  31. Yamada K, Shimizu A, Ierino FL et al (1999) Thymic transplantation in miniature swine. I. Development and function of the “thymokidney”. Transplantation 68:1684–1692

    Article  PubMed  CAS  Google Scholar 

  32. Yamada K, Shimizu A, Utsugi R et al (2000) Thymic transplantation in miniature swine. II. Induction of tolerance by transplantation of composite thymokidneys to thymectomized recipients. J Immunol 164:3079–3086

    PubMed  CAS  Google Scholar 

  33. Yamada K, Vagefi PA, Utsugi R et al (2003) Thymic transplantation in miniature swine: III. Induction of tolerance by transplantation of composite thymokidneys across fully major histocompatibility complex-mismatched barriers. Transplantation 76:530–536

    Article  PubMed  Google Scholar 

  34. LaMattina JC, Kumagai N, Barth RN et al (2002) Vascularized thymic lobe transplantation in miniature swine: I. Vascularized thymic lobe allografts support thymopoiesis. Transplantation 73:826–831

    Article  PubMed  Google Scholar 

  35. Kamano C, Vagefi PA, Kumagai N et al (2004) Vascularized thymic lobe transplantation in miniature swine: thymopoiesis and tolerance induction across fully MHC-mismatched barriers. Proc Natl Acad Sci USA 101:3827–3832

    Article  PubMed  CAS  Google Scholar 

  36. Nobori S, Shimizu A, Okumi M et al (2006) Thymic rejuvenation and the induction of tolerance by adult thymic grafts. Proc Natl Acad Sci USA 103:19081–19086

    Article  PubMed  CAS  Google Scholar 

  37. Griesemer AD, Hirakata A, Shimizu A et al (2009) Results of gal-knockout porcine thymokidney xenografts. Am J Transplant 9:2669–78

    Article  PubMed  CAS  Google Scholar 

  38. Yamada K, Gianello PR, Ierino FL et al (1997) Role of the thymus in transplantation tolerance in miniature swine. I. Requirement of the thymus for rapid and stable induction of tolerance to class I-mismatched renal allografts. J Exp Med 186:497–506

    Article  PubMed  CAS  Google Scholar 

  39. Nobori S, Samelson-Jones E, Shimizu A et al (2006) Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. Transplantation 81:26–35

    Article  PubMed  Google Scholar 

  40. Sengupta D, Harper M, Jennett B (1974) Effect of carotid ligation on cerebral blood flow in baboons. J Neurol Neurosurg Psychiatry 37:578–584

    Article  PubMed  CAS  Google Scholar 

  41. Fishman JA, Patience C (2004) Xenotransplantation: infectious risk revisited. Am J Transplant 4:1383–1390

    Article  PubMed  Google Scholar 

  42. Preville X, Flacher M, LeMauff B et al (2001) Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 71:460–468

    Article  PubMed  CAS  Google Scholar 

  43. Gollackner B, Mueller NJ, Houser S et al (2003) Porcine cytomegalovirus and coagulopathy in pig-to-primate xenotransplantation. Transplantation 75:1841–1847

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yamada, K., Scalea, J. (2012). Thymic Transplantation in Pig-to-Nonhuman Primates for the Induction of Tolerance Across Xenogeneic Barriers. In: Costa, C., Máñez, R. (eds) Xenotransplantation. Methods in Molecular Biology, vol 885. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-845-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-845-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-844-3

  • Online ISBN: 978-1-61779-845-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics