Skip to main content

Genetically Encoded Markers for Drosophila Neuroanatomy

  • Protocol
  • First Online:
The Making and Un-Making of Neuronal Circuits in Drosophila

Part of the book series: Neuromethods ((NM,volume 69))

Abstract

The description of the anatomy of neural circuits provides a framework for predictions about their ­functions. During the last 2 decades, the explosion of genetically encoded tools for manipulating and visualizing the neural circuits in the fruit fly allowed important advances in correlating neural circuits and behavior. In this chapter, we review the properties of the main genetically encoded markers that are used to study Drosophila neuroanatomy, including data on toxicity when available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spindler SR, Hartenstein V (2010) The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol 220:1–10

    Article  PubMed  Google Scholar 

  2. Brand AH, Dormand EL (1995) The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr Opin Neurobiol 5:572–578

    Article  PubMed  CAS  Google Scholar 

  3. Brand A (1995) GFP in Drosophila. Trends Genet 11:324–325

    Article  PubMed  CAS  Google Scholar 

  4. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  5. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  6. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  PubMed  CAS  Google Scholar 

  7. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  PubMed  CAS  Google Scholar 

  8. Hadjieconomou D et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8(3):260–6

    Article  PubMed  CAS  Google Scholar 

  9. Hampel S et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8(3):253–9

    Article  PubMed  CAS  Google Scholar 

  10. Williams DW, Tyrer M, Shepherd D (2000) Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428:630–640

    Article  PubMed  CAS  Google Scholar 

  11. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A 84:9123–9127

    Article  PubMed  Google Scholar 

  12. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  13. Matthews BW (2005) The structure of E. coli beta-galactosidase. Cr Biol 328:549–556

    Article  CAS  Google Scholar 

  14. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A 92:7036–7040

    Article  PubMed  CAS  Google Scholar 

  15. Dickson BJ (1996) Transgenic lines 1010T2 and 1010T10. Personal communication to FlyBase FBrf0086268

    Google Scholar 

  16. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  17. Mawhinney RM, Staveley BE (2011) Expression of GFP can influence aging and climbing ability in Drosophila. Genet Mol Res 10:494–505

    Article  PubMed  CAS  Google Scholar 

  18. Bloomington Drosophila Stock (1998) C. Alleles, transposons and insertions not in FlyBase. Personal communication to FlyBase FBrf0104719

    Google Scholar 

  19. Shiga Y, TanakaMatakatsu M, Hayashi S (1996) A nuclear GFP beta-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ 38:99–106

    Article  CAS  Google Scholar 

  20. Barolo S, Castro B, Posakony JW (2004) New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. Biotechniques 36(3):436–440

    PubMed  CAS  Google Scholar 

  21. Clarkson M, Saint R (1999) A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell Biol 18:457–462

    Article  PubMed  CAS  Google Scholar 

  22. Heidmann SP (2007) {His2Av-mRFP1} insertions. Personal communication to FlyBase FBrf0200083

    Google Scholar 

  23. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  24. Dunin-Borkowski OM, Brown NH (1995) Mammalian CD2 is an effective heterologous marker of the cell surface in Drosophila. Dev Biol 168:689–693

    Article  PubMed  CAS  Google Scholar 

  25. Ito K, Okada R, Tanaka NK, Awasaki T (2003) Cautionary observations on preparing and interpreting brain images using molecular biology-based staining techniques. Microsc Res Tech 62:170–186

    Article  PubMed  Google Scholar 

  26. Larsen CW, Hirst E, Alexandre C, Vincent JP (2003) Segment boundary formation in Drosophila embryos. Development 130:5625–5635

    Article  PubMed  CAS  Google Scholar 

  27. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14:678–684

    Article  PubMed  CAS  Google Scholar 

  28. Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128:1205–1217

    Article  PubMed  CAS  Google Scholar 

  29. Edwards TN, Meinertzhagen IA (2009) Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. J Neurosci 29:828–841

    Article  PubMed  CAS  Google Scholar 

  30. Ito K, Sass H, Urban J, Hofbauer A, Schneuwly S (1997) GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system. Cell Tissue Res 290:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Snapp EL, Iida T, Frescas D, Lippincott-Schwartz J, Lilly MA (2004) The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol Biol Cell 15:4512–4521

    Article  PubMed  CAS  Google Scholar 

  32. Ye B et al (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729

    Article  PubMed  CAS  Google Scholar 

  33. Yogev S, Schejter ED, Shilo BZ (2010) Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery. PLoS Biol 8(10):e1000505 doi:10.1371/journal.pbio.1000505

    Article  PubMed  Google Scholar 

  34. Pilling A, Saxton WP(2004) {MitoGFP.AP} construct and insertions. Personal communication to FlyBase FBrf0178877

    Google Scholar 

  35. Rikhy R, Ramaswami M, Krishnan KS (2003) A temperature-sensitive allele of Drosophila sesB reveals acute functions for the mitochondrial adenine nucleotide translocase in synaptic transmission and dynamin regulation. Genetics 165:1243–1253

    PubMed  CAS  Google Scholar 

  36. Pang ZP, Sudhof TC (2010) Cell biology of Ca2+−triggered exocytosis. Curr Opin Cell Biol 22:496–505

    Article  PubMed  CAS  Google Scholar 

  37. Littleton JT, Bellen HJ, Perin MS (1993) Expression of synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse. Development 118:1077–1088

    PubMed  CAS  Google Scholar 

  38. Adolfsen B, Saraswati S, Yoshihara M, Littleton JT (2004) Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. J Cell Biol 166:249–260

    Article  PubMed  CAS  Google Scholar 

  39. Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34:142–145

    Article  PubMed  CAS  Google Scholar 

  40. Zhang K, Guo JZ, Peng Y, Xi W, Guo A (2007) Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 316:1901–1904

    Article  PubMed  CAS  Google Scholar 

  41. Nicolai LJ et al (2010) Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 107:20553–20558

    Article  PubMed  CAS  Google Scholar 

  42. DiAntonio A et al (1993) Identification and characterization of Drosophila genes for synaptic vesicle proteins. J Neurosci 13:4924–4935

    PubMed  CAS  Google Scholar 

  43. Sudhof TC, Baumert M, Perin MS, Jahn R (1989) A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron 2:1475–1481

    Article  PubMed  CAS  Google Scholar 

  44. Chin AC, Burgess RW, Wong BR, Schwarz TL, Scheller RH (1993) Differential expression of transcripts from syb, a Drosophila melanogaster gene encoding VAMP (synaptobrevin) that is abundant in non-neuronal cells. Gene 131:175–181

    Article  PubMed  CAS  Google Scholar 

  45. Deitcher DL et al (1998) Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 18:2028–2039

    PubMed  CAS  Google Scholar 

  46. Ramaekers A et al (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15:982–992

    Article  PubMed  CAS  Google Scholar 

  47. Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster I. Lobula-specific pathways. J Comp Neurol 497:928–958

    Article  PubMed  Google Scholar 

  48. Helfrich-Forster C et al (2007) Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 500:47–70

    Article  PubMed  Google Scholar 

  49. Ito K et al (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77

    PubMed  CAS  Google Scholar 

  50. Estes PS, Ho GL, Narayanan R, Ramaswami M (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin–green fluorescent protein chimera in vivo. J Neurogenet 13:233–255

    Article  PubMed  CAS  Google Scholar 

  51. Raghu SV, Joesch M, Borst A, Reiff DF (2007) Synaptic organization of lobula plate tangential cells in Drosophila: gamma-aminobutyric acid receptors and chemical release sites. J Comp Neurol 502:598–610

    Article  PubMed  CAS  Google Scholar 

  52. Wagh DA et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    Article  PubMed  CAS  Google Scholar 

  53. Hofbauer A et al (2009) The Wuerzburg hybridoma library against Drosophila brain. J Neurogenet 23:78–91

    Article  PubMed  CAS  Google Scholar 

  54. Wichmann C, Sigrist SJ (2010) The active zone T-bar–a plasticity module? J Neurogenet 24:133–145

    Article  PubMed  CAS  Google Scholar 

  55. Mauss A, Tripodi M, Evers JF, Landgraf M (2009) Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 7:e1000200

    Article  PubMed  Google Scholar 

  56. Mori K, Fujita SC, Watanabe Y, Obata K, Hayaishi O (1987) Telencephalon-specific antigen identified by monoclonal antibody. Proc Natl Acad Sci U S A 84:3921–3925

    Article  PubMed  CAS  Google Scholar 

  57. Hattori D, Millard SS, Wojtowicz WM, Zipursky SL (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24:597–620

    Article  PubMed  CAS  Google Scholar 

  58. Wang J et al (2004) Transmembrane/­juxtamembrane domain-dependent Dscam ­distribution and function during mushroom body neuronal morphogenesis. Neuron 43:663–672

    Article  PubMed  CAS  Google Scholar 

  59. Vomel M, Wegener C (2008) Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 3:e1848

    Article  PubMed  Google Scholar 

  60. Young JM, Armstrong JD (2010) Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol 518:1500–1524

    Article  PubMed  CAS  Google Scholar 

  61. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  PubMed  CAS  Google Scholar 

  62. Feinberg EH et al (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous ­systems. Neuron 57:353–363

    Article  PubMed  CAS  Google Scholar 

  63. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Ramaekers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramaekers, A., Quan, Xj., Hassan, B.A. (2012). Genetically Encoded Markers for Drosophila Neuroanatomy. In: Hassan, B. (eds) The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods, vol 69. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-830-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-830-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-829-0

  • Online ISBN: 978-1-61779-830-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics