Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Allergic contact dermatitis remains one of the most common occupational and environmental health issues. As with other forms of allergy the disease progresses in two stages: an initial “induction” phase during which sensitization is acquired, followed later (after subsequent exposure to the same chemical allergen) by “elicitation” of dermal inflammation. In recent years much has been learned about the characteristics of immune responses to skin sensitizing chemicals and the roles played by dendritic cells, cytokines and chemokines and real progress has been made. However, a current and significant challenge is how to replace in vivo methods with non-animal alternatives. This issue is given added significance via consideration of the clinical information, where the reality is that, despite useful toxicology methods, the burden of the disease remains substantial, with some contact allergies being at hyperendemic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler S, Basketter DA, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85:367–485

    Article  PubMed  CAS  Google Scholar 

  • Aleksic M, Thain E, Roger D et al (2009) Reactivity profiling: covalent modification of single nucleophile peptides for skin sensitization risk assessment. Toxicol Sci 108: 401–411

    Google Scholar 

  • Andersen KE, Maibach HI (1985) Contact allergy predictive test in guinea pigs. Karger, Basel, Switzerland

    Google Scholar 

  • Api AM, Basketter DA, Cadby PA et al (2008) Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52:3–23

    Article  PubMed  CAS  Google Scholar 

  • Ashikaga T, Hoya M, Itagaki H et al (2002) Evaluation of CD86 expression and MHC class II molecule internalization in THP-1 human monocytic cells as predictive endpoints for contact sensitizers. Toxicol In Vitro 16:711–716

    Article  PubMed  CAS  Google Scholar 

  • Ashikaga T, Sakaguchi H, Sono S et al (2010) A comparative evaluation of in vitro skin sensitisation tests: the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA). Altern Lab Anim 38:275–284

    PubMed  CAS  Google Scholar 

  • Barker JN, Mitra RS, Griffiths CE et al (1991) Keratinocytes as initiators of inflammation. Lancet 337(8735):211–214

    Google Scholar 

  • Basketter DA (2000) Quantitative aspects of allergen exposure in relation to allergic contact dermatitis on the hands. In: Menné T, Maibach HI (eds) Hand eczema, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Basketter DA (2008) Skin immunology and sensitisation. In Principles and Practice of Skin Toxicology. Eds Chilcott RP and Price S, Wiley, Chichester, pp149–168

    Google Scholar 

  • Basketter DA (2010) Methyldibromo glutaronitrile, skin sensitisation and quantitative risk assessment. Cut Ocul Toxicol 29:4–9

    Article  CAS  Google Scholar 

  • Basketter DA, Kimber I (2009) Updating the skin sensitization in vitro data assessment paradigm in 2009. J Appl Toxicol 29:545–550

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Kimber I (2010) Skin sensitization, false positives and false negatives: experience with guinea pig assays. J Appl Toxicol 30:381–386

    PubMed  CAS  Google Scholar 

  • Basketter DA, Lahti A (2011) Immediate contact reactions. In: Johansen JD, Frosch PF, Lepoittevin J-P (eds) Contact dermatitis, 5th edn. Springer, Berlin

    Google Scholar 

  • Basketter DA, Maxwell G (2007) Identification and characterization of allergens: in vitro alternatives. Exp Rev Dermatol 2:471–480

    Article  CAS  Google Scholar 

  • Basketter DA and Gerberick GF (1996) Interlaboratory evaluation of the Buehler test. Contact Dermatitis 35:146–151

    Article  CAS  Google Scholar 

  • Basketter DA, Gerberick GF, Robinson M (1996) Risk assessment. In: Kimber I, Maurer T (eds) The toxicology of contact hypersensitivity. Taylor and Francis, London

    Google Scholar 

  • Basketter DA, Johansen JD, McFadden J and Søsted H (2011) Hair Dyes. In Johansen JD, Frosch PF, Lepoittevin J-P (eds) Contact dermatitis, 5th edn chapter 34.Springer, Berlin, pp 629–642

    Google Scholar 

  • Basketter DA, Lea LJ, Dickens A et al (1999) A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose responses. J Appl Toxicol 19:261–266

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Blaikie L, Dearman RJ et al (2000) Use of the local lymph node assay for the estimation of relative contact allergic potency. Contact Dermatitis 42:344–348

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Angelini G, Ingber A et al (2003) Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermatitis 49:1–7

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Andersen KE, Liden C et al (2005a) Evaluation of the skin sensitizing potency of chemicals by using the existing methods and considerations of relevance for elicitation. Contact Dermatitis 52:39–43

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Clapp C, Jefferies D et al (2005b) Predictive identification of human skin sensitisation thresholds. Contact Dermatitis 53:260–267

    Article  PubMed  Google Scholar 

  • Basketter DA, Jefferies D, Safford RJ et al (2006) The impact of exposure variables on the induction of skin sensitisation. Contact Dermatitis 55:178–185

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Casati S, Cronin MTD et al (2007a) Skin sensitization and epidermal disposition. Altern Lab Anim 35:137–154

    PubMed  CAS  Google Scholar 

  • Basketter DA, Gerberick GF, Kimber I (2007b) The local lymph node assay EC3 value: status of validation. Contact Dermatitis 57:70–75

    Article  PubMed  CAS  Google Scholar 

  • Basketter DA, Clapp CJ, Safford BJ et al (2008) Preservatives and skin sensitisation quantitative risk assessment: risk benefit considerations. Dermatitis 19:20–27

    PubMed  Google Scholar 

  • Buckley DA, Basketter DA, Kan-King-Yu D et al (2008) Atopy and contact allergy to fragrance 1: allergic reactions to the fragrance mix 1 (the Larssen mix). Contact Dermatitis 59:220–225

    Article  PubMed  Google Scholar 

  • Buehler EV (1965) Delayed contact hypersensitivity in the guinea pig. Arch Dermatol 91:171–177

    Article  PubMed  CAS  Google Scholar 

  • Cavani A, Mei D, Guerra E et al (1998) Patients with allergic contact dermatitis to nickel and non-allergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628

    Article  PubMed  CAS  Google Scholar 

  • Cavani A, Albanesi C, Traidl C et al (2001) Effector and regulatory T cells in allergic contact dermatitis. Trends Immunol 22:118–120

    Article  PubMed  CAS  Google Scholar 

  • Cronin MTD, Basketter DA (1994) Multivariate QSAR analysis of a skin sensitization database. SAR QSAR Environ Res 2:159–179

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch M, Scott RC, Basketter DA et al (1993) Influence of sodium lauryl sulphate on 2,4-dinitrochlorobenzene-induced lymph node activation. Toxicology 77:181–191

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch M, Dearman RJ, Kimber I (1997) Langerhans cell require signals from both tumor necrosis factor-α and interleukin-1β for migration. Immunology 92:388–395

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch M, Dearman RJ, Griffiths CEM et al (2000) Langerhans cell migration. Clin Exp Dermatol 25:413–418

    Article  PubMed  CAS  Google Scholar 

  • Cumberbatch M, Dearman RJ, Antonopoulos C et al (2001) Interleukin (IL)-18 induces Langerhans cell migration by a tumor necrosis factor-α and IL-1β-dependent mechanism. Immunology 102:323–330

    Article  PubMed  CAS  Google Scholar 

  • Dancik Y, Miller MA, Jaworska J, Kasting GB (2012) Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev. Jan 23. [Epub ahead of print]

    Google Scholar 

  • De Groot AC (2008) Patch testing, 3rd edn. Acdegroot Publishing, Wapserveen

    Google Scholar 

  • Dillarstone A (1999) Cosmetic preservatives. Contact Dermatitis 37:190

    Article  Google Scholar 

  • Divkovic M, Pease CM, Gerberick GF et al (2005) Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitisation. Contact Dermatitis 53:189–200

    Article  PubMed  CAS  Google Scholar 

  • Farage MA, Bjerke DL, Mahony C et al (2003) Quantitative risk assessment for the induction of allergic contact dermatitis: uncertainty factors for mucosal exposures. Contact Dermatitis 49:140–147

    Article  PubMed  Google Scholar 

  • Felter SP, Robinson MK, Basketter DA et al (2002) A review of the scientific basis for uncertainty factors for use in quantitative risk assessment for the induction of allergic contact dermatitis. Contact Dermatitis 47:257–266

    Article  PubMed  CAS  Google Scholar 

  • Felter SP, Ryan CA, Basketter DA et al (2003) Application of the risk assessment paradigm to the induction of allergic contact dermatitis. Regul Toxicol Pharmacol 37:1–10

    Article  PubMed  Google Scholar 

  • Frosch PJ, Aberer W, August PJ et al (2011) International comparison of legal aspects of workers compensation for occupational contact dermatitis. In: Johansen JD, Frosch PJ, Lepoittevin J-P (eds) contact dermatitis, 5th edn. Springer, Berlin

    Google Scholar 

  • Gerberick GF, Ryan CA, Kimber I et al (2000) Local lymph node assay: validation assessment for regulatory purposes. Am J Contact Dermat 11:3–18

    Article  PubMed  CAS  Google Scholar 

  • Gerberick GF, Robinson MK, Ryan CA et al (2001a) Contact allergic potency: correlation of human and local lymph node assay data. Am J Contact Dermat 12:156–161

    Article  PubMed  CAS  Google Scholar 

  • Gerberick GF, Robinson MK, Felter S et al (2001b) Understanding fragrance allergy using an exposure-based risk assessment approach. Contact Dermatitis 45:333–340

    Article  PubMed  CAS  Google Scholar 

  • Gerberick GF, Vassallo JD, Bailey RE et al (2004) Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81:332–343

    Article  PubMed  CAS  Google Scholar 

  • Gerberick GF, Troutman JA, Foertsch LM et al (2009) Investigation of a peptide reactivity assay of pro-hapten skin sensitizers using a peroxidise-peroxide oxidation system. Toxicol Sci 112:164–174

    Article  PubMed  CAS  Google Scholar 

  • Griem P, Goebel C, Scheffler H (2003) Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regul Toxicol Pharmacol 38:269–290

    Article  PubMed  CAS  Google Scholar 

  • Hjorth N, Roed-Petersen J (1976) Occupational protein contact dermatitis in food handlers. Contact Dermatitis 2:28–42

    Article  PubMed  CAS  Google Scholar 

  • IFRA (2009) International Fragrance Research Association Standards, 43rd amendment: isoeugenol. Dated 14 Oct 2009

    Google Scholar 

  • Johansen JD, Frosch PJ, Lepoittevin J-P (2011) Contact dermatitis, 5th edn. Springer, Berlin

    Book  Google Scholar 

  • Jolanki R, Kanerva L, Estlander T (2004) Epoxy resins. In: Kanerva L, Elsner P, Wahlberg JE, Maibach HI (eds) Condensed handbook of occupational dermatology. Springer, Heidelberg

    Google Scholar 

  • Kanerva L, Elsner P, Wahlberg JE, Maibach HI (2004) Condensed handbook of occupational dermatology. Springer, Heidelberg

    Book  Google Scholar 

  • Karlberg A-T, Bergstrom MA, Borje A et al (2008) Allergic contact dermatitis—formations, structural requirements and reactivity of skin sensitizers. Chem Res Toxicol 21:53–69

    Article  PubMed  Google Scholar 

  • Kimber I, Basketter DA (1992) The murine local lymph node assay: a commentary on collaborative studies and new directions. Food Chem Toxicol 30:165–169

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Basketter DA (1997) Contact sensitization: a new approach to risk assessment. Human Ecol Risk Assess 3:385–395

    Article  CAS  Google Scholar 

  • Kimber I, Dearman RJ (1991) Investigation of lymph node cell proliferation as a possible immunological correlate of contact sensitizing potential. Food Chem Toxicol 29:125–129

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Dearman RJ, Scholes EW et al (1994) The local lymph node assay: developments and applications. Toxicology 93:13–31

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Dearman RJ, Cumberbatch M et al (1998) Langerhans cells and chemical allergy. Curr Opin Immunol 10:614–619

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Cumberbatch M, Dearman RJ et al (2000) Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 142:401–412

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Dearman RJ, Basketter DA et al (2008) Dose metrics in the acquisition of skin sensitization: thresholds and importance of dose per unit area. Regul Toxicol Pharmacol 52:39–45

    Article  PubMed  CAS  Google Scholar 

  • Kimber I, Basketter DA, Gerberick GF et al (2011) Chemical allergy: translating biology into hazard characterization. Toxicol Sci 120:238–268

    Article  CAS  Google Scholar 

  • Kligman AM (1966) The identification of contact allergens by human assay. III. The maximization test: a procedure for screening and rating contact sensitizers. J Invest Dermatol 47:393–409

    PubMed  CAS  Google Scholar 

  • Kligman AM (1996) The identification of contact allergens by human assay. II. Factors influencing the induction and measurement of allergic contact dermatitis. J Invest Dermatol 47:375–392

    Google Scholar 

  • Kligman AM, Basketter DA (1995) A critical commentary and updating of the guinea pig maximization test. Contact Dermatitis 32:129–134

    Article  PubMed  CAS  Google Scholar 

  • Lepoittevin J-P (2011) Molecular aspects in allergic and irritant contact dermatitis. In: Johansen JD, Frosch PJ, Lepoittevin J-P (eds) contact dermatitis, 5th edn. Springer, Berlin

    Google Scholar 

  • Magnusson B, Kligman AM (1970) Allergic contact dermatitis in the guinea pig. Identification of contact allergens. Charles C. Thomas, Springfield

    Google Scholar 

  • Marzulli FN, Maibach HI (1973) Antimicrobials: experimental contact sensitization in man. J Soc Cosmet Chem 24:399–421

    CAS  Google Scholar 

  • Marzulli FN, Maibach HI (1974) The use of graded concentration in studying skin sensitizers: experimental contact sensitization in man. Food Cosmet Toxicol 12:219–227

    Article  PubMed  CAS  Google Scholar 

  • Marzulli FN, Maibach HI (1980a) Contact allergy: predictive testing of fragrance ingredients in humans by Draize and maximization methods. J Environ Pathol Toxicol 3:235–245

    PubMed  CAS  Google Scholar 

  • Marzulli FN, Maibach HI (1980b) Further studies of vehicles and elicitation concentration in experimental contact sensitization testing in humans. Contact Dermatitis 6:131–133

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (1994) Tolerance, danger and the extended family. Annu Rev Immunol 12:991–1045

    Article  PubMed  CAS  Google Scholar 

  • McFadden JP, Basketter DA (2000) Contact allergy, irritancy and ‘danger’. Contact Dermatitis 42:123–127

    Article  PubMed  CAS  Google Scholar 

  • McFadden JP, Basketter DA, Dearman RJ et al (2011a) Extra domain A-positive feedback loops and their association with cutaneous inflammatory disease. Clin Dermatol 29:257–265

    Article  PubMed  Google Scholar 

  • McFadden JP, Yeo L, White JM (2011b) Clinical and experimental aspects of allergic contact dermatitis to para-phenylenediamine. Clin Dermatol 29:316–324

    Article  PubMed  Google Scholar 

  • Miyazawa M, Ito Y, Yoshida Y, Sakaguchi H, Suzuki H. (2007) Phenotypic alterations and cytokine production in THP-1 cells in response to allergens. Toxicol In Vitro 21:428–437

    Article  PubMed  Google Scholar 

  • Natsch A, Gfeller H, Rothaupt M, Ellis G (2007) Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicol In Vitro 21:1220–1226

    Article  PubMed  CAS  Google Scholar 

  • OECD (2002) OECD guideline for the testing of chemicals, Guideline 429: skin sensitisation: local lymph node assay. Organisation for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • Patlewicz G, Aptula AO, Roberts DW et al (2007) An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential. SAR QSAR Environ Res 18:515–541

    Article  PubMed  CAS  Google Scholar 

  • Python F, Goebel C, Aeby P (2007) Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 220:113–124

    Article  PubMed  CAS  Google Scholar 

  • Rietschel RL, Fowler JF (2008) Fisher’s contact dermatitis, 6th edn. BC Decker, Hamilton

    Google Scholar 

  • Roberts DW, Aptula AO (2008) Determinants of skin sensitisation potential. J Appl Toxicol 28:377–387

    Article  PubMed  CAS  Google Scholar 

  • Roberts DW, Patlewicz G, Kern PS et al (2007) Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitisation. Chemical Research in Toxicology 16:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Rustemeyer T, Van Hoogstraten IMW, Von Blomberg BMA et al (2011) Mechanisms of irritant and allergic contact dermatitis. In: Johansen JD, Frosch PJ, Lepoittevin J-P (eds) Textbook of contact dermatitis, 5th edn. Springer, Berlin

    Google Scholar 

  • Ryan CA, Gerberick GF, Cruse LW et al (2000) Activity of human contact allergens in the murine local lymph node assay. Contact Dermatitis 43:95–102

    Article  PubMed  CAS  Google Scholar 

  • Safford RJ, Aptula AO, Gilmour N (2011) Refinement of the dermal sensitisation threshold (DST) approach using a larger dataset and incorporating mechanistic chemistry domains. Regul Toxicol Pharmacol 60:218–224

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi H, Ashikaga T, Miyazawa M et al (2006) Development of an in vitro skin sensitization test using human cell lines; Human Cell Line Activation Test (h-CLAT). II. An international study of the h-CLAT. Toxicol In Vitro 20:774–784

    Article  PubMed  CAS  Google Scholar 

  • SCCS (Scientific Committee on Consumer Products) (2007) http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_q_196.pdf. Accessed 29 May 2011

  • Schneider K, Akkan Z (2004) Quantitative relationship between the local lymph node assay and human skin sensitization assays. Regul Toxicol Pharmacol 39:245–255

    Article  PubMed  CAS  Google Scholar 

  • Schnuch A, Uter W, Geier J, Gefeller O; IVDK study group (2002) Epidemiology of contact allergy: an estimation of morbidity employing the clinical epidemiology and drug-utilization research (CE-DUR) approach. Contact Dermatitis 47(1):32–39

    Article  PubMed  CAS  Google Scholar 

  • Schnuch A, Westphal G, Mössner R et al (2011) Genetic factors in contact allergy—review and future goals. Contact Dermatitis 64:2–23

    Article  PubMed  CAS  Google Scholar 

  • Shmidt E, Farmer SA, Davis MD (2010) Patch-testing with plastics and glues series allergens. Dermatitis 21:269–274

    PubMed  Google Scholar 

  • Smith CK, Hotchkiss SAM (2001) Xenobiotics as skin sensitizers: metabolic activation and detoxification, and protein-binding mechanisms. In: Smith C, Hotchkiss S (eds) Allergic ­contact dermatitis: chemical and metabolic mechanisms. Taylor and Francis, London

    Google Scholar 

  • Smith HS, Holloway DB, Armstrong DKB et al (2000) Irritant thresholds in subjects with ­colophony allergy. Contact Dermatitis 41:95–97

    Article  Google Scholar 

  • Sosted H, Menne T (2005) Allergy to 3-nitro-p-hydroxyethylaminophenol and 4-amino-3-­nitrophenol in a hair dye. Contact Dermatitis 52:317–319

    Article  PubMed  Google Scholar 

  • Thyssen JP (2009) The epidemiology of contact allergy. Allergen exposure and recent trends. G Ital Dermatol Venereol 144:507–514

    PubMed  CAS  Google Scholar 

  • Thyssen JP, Linneberg A, Menné T, Nielsen NH, Johansen JD (2009) The prevalence and morbidity of sensitization to fragrance mix I in the general population. Br J Dermatol 161:95–101

    Article  PubMed  CAS  Google Scholar 

  • Toebak MJ, Gibbs S, Bruynzeel D et al (2009) Dendritic cells: biology of the skin. Contact Dermatitis 60:2–20

    Article  PubMed  CAS  Google Scholar 

  • Trautmann A, Akdis M, Kleemann D et al (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35

    Article  PubMed  CAS  Google Scholar 

  • van Loveren H, Cockshott A, Gebel T (2008) Skin sensitization in chemical risk assessment: report of a WHO/IPCS international workshop focusing on dose-response assessment. Regul Toxicol Pharmacol 50:155–199

    Article  PubMed  Google Scholar 

  • Vocanson M, Hennino A, Rozières A (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64:1699–1714

    Article  PubMed  CAS  Google Scholar 

  • Wahlberg JE, Boman A (1985) Guinea pig maximization test. In: Andersen KE, Maibach HI (eds) Contact allergy: predictive test in guinea pigs. Current problems in dermatology. Karger, Basel

    Google Scholar 

  • Warbrick EV, Dearman RJ, Lea LJ et al (1999) Local lymph node assay responses to paraphenylenediamine: intra- and inter-laboratory evaluations. J Appl Toxicol 19:255–260

    Article  PubMed  CAS  Google Scholar 

  • Weltzien HU, Moulon C, Martin S (1996) T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 107:141–151

    Article  PubMed  CAS  Google Scholar 

  • White JM, Gilmour NJ, Jeffries D et al (2007) A general population from Thailand: incidence of common allergens and emphasis on para-phenylenediamine. Clin Exp Allergy 37:1848–1853

    Article  PubMed  CAS  Google Scholar 

  • Winhoven SM, Rutter KJ, Beck MH (2007) Toluene-2,5-diamine may be an isolated allergy in individuals sensitized by permanent hair dye. Contact Dermatitis 57:193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Basketter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Basketter, D.A., McFadden, J.P. (2012). Cutaneous Allergies. In: Dietert, R., Luebke, R. (eds) Immunotoxicity, Immune Dysfunction, and Chronic Disease. Molecular and Integrative Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-812-2_4

Download citation

Publish with us

Policies and ethics