Skip to main content

The Effect of Chocolate on Human and Gut Microbial Metabolic Interactions: Emphasis on Human Health and Nutritional Status

  • Chapter
  • First Online:
Chocolate in Health and Nutrition

Part of the book series: Nutrition and Health ((NH,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boelsma E, Brink EJ, Stafleu A, Hendriks HF. Measures of postprandial wellness after single intake of two protein-carbohydrate meals. Appetite. 2010;54(3):456–64.

    Article  PubMed  CAS  Google Scholar 

  2. Rezzi S, Ramadan Z, Fay LB, Kochhar S. Nutritional metabonomics: applications and perspectives. J Proteome Res. 2007;6(2):513–25.

    Article  PubMed  CAS  Google Scholar 

  3. Sorensen LB, Moller P, Flint A, Martens M, Raben A. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int J Obes Relat Metab Disord. 2003;27(10):1152–66.

    Article  PubMed  CAS  Google Scholar 

  4. Drewnowski A. Taste preferences and food intake. Annu Rev Nutr. 1997;17:237–53.

    Article  PubMed  CAS  Google Scholar 

  5. Drewnowski A, Henderson SA, Levine A, Hann C. Taste and food preferences as predictors of dietary practices in young women. Public Health Nutr. 1999;2(4):513–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bilman EM, van Trijp JC, Renes RJ. Consumer perceptions of satiety-related snack food decision making. Appetite. 2010;55(3):639–47.

    Article  PubMed  CAS  Google Scholar 

  7. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006;103(33):12511–6.

    Article  PubMed  CAS  Google Scholar 

  8. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, et al. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006;5(10):2780–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96.

    Article  PubMed  Google Scholar 

  10. Kuller LH. Nutrition, lipids, and cardiovascular disease. Nutr Rev. 2006;64(2 Pt 2):S15–26.

    Article  PubMed  Google Scholar 

  11. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol. 2007;3:112.

    Article  PubMed  Google Scholar 

  12. Turnbaugh P, Ley R, Mahowald M, Magrini V, Mardis E, Gordon J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  13. Ley R, Turnbaugh P, Klein S, Gordon J. Human gut microbes associated with obesity. Nature. 2006;444:1023–4.

    Article  Google Scholar 

  14. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    Article  PubMed  CAS  Google Scholar 

  15. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7.

    Article  PubMed  CAS  Google Scholar 

  16. Nicholson JK, Wilson ID. Opinion: understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2(8):668–76.

    Article  PubMed  CAS  Google Scholar 

  17. Martin FP, Sprenger N, Yap IK, Wang Y, Bibiloni R, Rochat F, et al. Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res. 2009;8(4):2090–105.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–8.

    Article  PubMed  CAS  Google Scholar 

  19. Martin F-PJ, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, et al. Top-down systems biology integration of conditional prebiotic transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol. 2008;4:205.

    PubMed  Google Scholar 

  20. Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol. 2008;4:157.

    PubMed  Google Scholar 

  21. Rezzi S, Vera FA, Martin FP, Wang S, Lawler D, Kochhar S. Automated SPE-RP-HPLC fractionation of biofluids combined to off-line NMR spectroscopy for biomarker identification in metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):271–8.

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson JK, Sadler PJ, Bales JR, Juul SM, MacLeod AF, Sonksen PH. Monitoring metabolic disease by proton NMR of urine. Lancet. 1984;2(8405):751–2.

    Article  PubMed  CAS  Google Scholar 

  23. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984;30(3):426–32.

    PubMed  CAS  Google Scholar 

  24. Montoliu I, Martin FP, Collino S, Rezzi S, Kochhar S. Multivariate modeling strategy for intercompartmental analysis of tissue and plasma (1)H NMR spectrotypes. J Proteome Res. 2009;8(5):2397–406.

    Article  PubMed  CAS  Google Scholar 

  25. Rios LY, Gonthier MP, Remesy C, Mila I, Lapierre C, Lazarus SA, et al. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 2003;77(4):912–8.

    PubMed  CAS  Google Scholar 

  26. Serafini M, Bugianesi R, Maiani G, Valtuena S, De SS, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013.

    Article  PubMed  CAS  Google Scholar 

  27. Mathur S, Devaraj S, Grundy SM, Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr. 2002;132(12):3663–7.

    PubMed  CAS  Google Scholar 

  28. Wan Y, Vinson JA, Etherton TD, Proch J, Lazarus SA, Kris-Etherton PM. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am J Clin Nutr. 2001;74(5):596–602.

    PubMed  CAS  Google Scholar 

  29. Mursu J, Voutilainen S, Nurmi T, Rissanen TH, Virtanen JK, Kaikkonen J, et al. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic Biol Med. 2004;37(9):1351–9.

    Article  PubMed  CAS  Google Scholar 

  30. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8):2073S–85.

    PubMed  CAS  Google Scholar 

  31. Steinberg FM, Bearden MM, Keen CL. Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc. 2003;103(2):215–23.

    Article  PubMed  Google Scholar 

  32. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005;81(3):611–4.

    PubMed  CAS  Google Scholar 

  33. Taubert D, Roesen R, Lehmann C, Jung N, Schomig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA. 2007;298(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  34. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. ()-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA. 2006;103(4):1024–9.

    Article  PubMed  CAS  Google Scholar 

  35. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46(2):398–405.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem. 2002;50(24):7182–6.

    Article  PubMed  CAS  Google Scholar 

  37. Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J. 2005;386(Pt 3):471–8.

    PubMed  CAS  Google Scholar 

  38. Brand-Miller J, Holt SH, de Jong V, Petocz P. Cocoa powder increases postprandial insulinemia in lean young adults. J Nutr. 2003;133(10):3149–52.

    PubMed  CAS  Google Scholar 

  39. Parker G, Parker I, Brotchie H. Mood state effects of chocolate. J Affect Disord. 2006;92(2–3):149–59.

    Article  PubMed  Google Scholar 

  40. di Tomaso E, Beltramo M, Piomelli D. Brain cannabinoids in chocolate. Nature. 1996;382(6593):677–8.

    Article  PubMed  Google Scholar 

  41. McDonald I. Gordon Holmes lecture: Gordon Holmes and the neurological heritage. Brain. 2007;130(Pt 1):288–98.

    PubMed  Google Scholar 

  42. Rezzi S, Ramadan Z, Martin FP, Fay LB, van Bladeren P, Lindon JC, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res. 2007;6(11):4469–77.

    Article  PubMed  CAS  Google Scholar 

  43. Nicholson JK, Holmes E, Lindon JC. Metabonomics; understanding the consequences of xenobiotic induced metabolic dysfunction using NMR spectroscopy of the biofluids, multivariate statistics and expert system. Xenobiotica. 1999;29(11):1181–9.

    Article  PubMed  CAS  Google Scholar 

  44. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;817(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  45. Cianflone K, Vu H, Zhang Z, Sniderman AD. Effects of albumin on lipid synthesis, apo B-100 secretion, and LDL catabolism in HepG2 cells. Atherosclerosis. 1994;107(2):125–35.

    Article  PubMed  CAS  Google Scholar 

  46. Yang D, Brunengraber H. Glutamate, a window on liver intermediary metabolism. J Nutr. 2000;130(4S Suppl):991S–4.

    PubMed  CAS  Google Scholar 

  47. Bales JR, Bell JD, Nicholson JK, Sadler PJ. 1H NMR studies of urine during fasting: excretion of ketone bodies and acetylcarnitine. Magn Reson Med. 1986;3(6):849–56.

    Article  PubMed  CAS  Google Scholar 

  48. Brass EP. Supplemental carnitine and exercise. Am J Clin Nutr. 2000;72(2 Suppl):618S–23.

    PubMed  CAS  Google Scholar 

  49. Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem. 2001;268(5):1363–72.

    Article  PubMed  CAS  Google Scholar 

  50. Gostner A, Blaut M, Schaffer V, Kozianowski G, Theis S, Klingeberg M, et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr. 2006;95(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci USA. 2004;101(34):12676–81.

    Article  PubMed  CAS  Google Scholar 

  52. Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994;14:269–96.

    Article  PubMed  CAS  Google Scholar 

  53. Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA. The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med. 2002;33(2):220–35.

    Article  PubMed  CAS  Google Scholar 

  54. Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288–302.

    Article  PubMed  CAS  Google Scholar 

  55. Nowak A, Libudzisz Z. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe. 2006;12(2):80–4.

    Article  PubMed  CAS  Google Scholar 

  56. Xu ZR, Hu CH, Wang MQ. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J Gen Appl Microbiol. 2002;48(2):83–90.

    Article  PubMed  CAS  Google Scholar 

  57. Martin FP, Rezzi S, Pere-Trepat E, Kamlage B, Collino S, Leibold E, et al. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res. 2009;8:5568–79.

    Article  PubMed  CAS  Google Scholar 

  58. Noble RE. Diagnosis of stress. Metabolism. 2002;51(6 Suppl 1):37–9.

    Article  PubMed  CAS  Google Scholar 

  59. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56(3):331–49.

    Article  PubMed  CAS  Google Scholar 

  60. Santos J, Perdue MH. Stress and neuroimmune regulation of gut mucosal function. Gut. 2000;47(Suppl 4):iv49–51.

    PubMed  CAS  Google Scholar 

  61. Santos J, Benjamin M, Yang PC, Prior T, Perdue MH. Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol. 2000;278(6):G847–54.

    PubMed  CAS  Google Scholar 

  62. Hyland K, Surtees RA, Rodeck C, Clayton PT. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology. 1992;42(10):1980–8.

    Article  PubMed  CAS  Google Scholar 

  63. Caso JR, Leza JC, Menchen L. The effects of physical and psychological stress on the gastro-intestinal tract: lessons from animal models. Curr Mol Med. 2008;8(4):299–312.

    Article  PubMed  CAS  Google Scholar 

  64. Barclay GR, Turnberg LA. Effect of psychological stress on salt and water transport in the human jejunum. Gastroenterology. 1987;93(1):91–7.

    PubMed  CAS  Google Scholar 

  65. Tannock GW. New perceptions of the gut microbiota: implications for future research. Gastroenterol Clin North Am. 2005;34(3):361–82, vii.

    Article  PubMed  Google Scholar 

  66. Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res. 2008;7(9):3718–28.

    Article  PubMed  CAS  Google Scholar 

  67. Beliveau GP, Brusilow SW. Glycine availability limits maximum hippurate synthesis in growing rats. J Nutr. 1987;117(1):36–41.

    PubMed  CAS  Google Scholar 

  68. Seematter G, Binnert C, Tappy L. Stress and metabolism. Metab Syndr Relat Disord. 2005;3(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  69. Goldstein DS. Catecholamines and stress. Endocr Regul. 2003;37(2):69–80.

    PubMed  CAS  Google Scholar 

  70. Goldstein DS, Dionne R, Sweet J, Gracely R, Brewer Jr HB, Gregg R, et al. Circulatory, plasma catecholamine, cortisol, lipid, and psychological responses to a real-life stress (third molar extractions): effects of diazepam sedation and of inclusion of epinephrine with the local anesthetic. Psychosom Med. 1982;44(3):259–72.

    PubMed  CAS  Google Scholar 

  71. Berk LS, Tan SA, Berk D. Cortisol and catecholamine stress hormone decrease is associated with the behavior of perceptual anticipation of mirthful laughter. FASEB J. 2008;22(1_MeetingAbstracts):946.

    Google Scholar 

  72. Gilmore MS, Ferretti JJ. The thin line between gut commensal and pathogen. Science. 2003;299:1999–2002.

    Article  PubMed  CAS  Google Scholar 

  73. Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, Ramnani P. Studying the human gut microbiota in the trans-omics era–focus on metagenomics and metabonomics. Curr Pharm Des. 2009;15(13):1415–27.

    Article  PubMed  CAS  Google Scholar 

  74. Dethlefsen L, Fall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8.

    Article  PubMed  CAS  Google Scholar 

  75. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  Google Scholar 

  76. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003;299:2074–6.

    Article  PubMed  CAS  Google Scholar 

  77. Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Remesy C. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br J Nutr. 2002;87(4):299–306.

    Article  PubMed  CAS  Google Scholar 

  78. Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, et al. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr. 2000;130(11):2733–8.

    PubMed  CAS  Google Scholar 

  79. Scalbert A, Deprez S, Mila I, Albrecht AM, Huneau JF, Rabot S. Proanthocyanidins and human health: systemic effects and local effects in the gut. Biofactors. 2000;13(1–4):115–20.

    Article  PubMed  CAS  Google Scholar 

  80. Rechner AR, Kuhnle G, Hu H, Roedig-Penman A, van den Braak MH, Moore KP, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res. 2002;36(11):1229–41.

    Article  PubMed  CAS  Google Scholar 

  81. Urpi-Sarda M, Llorach R, Khan N, Monagas M, Rotches-Ribalta M, Lamuela-Raventos R, et al. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans. J Agric Food Chem. 2010;58(8):4706–11.

    Article  PubMed  CAS  Google Scholar 

  82. Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr. 1999;69(5):1052S–7.

    PubMed  CAS  Google Scholar 

  83. Fooks LJ, Gibson GR. Probiotics as modulators of the gut flora. Br J Nutr. 2002;88(Suppl 1):S39–49.

    Article  PubMed  CAS  Google Scholar 

  84. Lahtinen SJ, Ouwehand AC, Salminen SJ, Forssell P, Myllarinen P. Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol. 2007;44(5):500–5.

    Article  PubMed  CAS  Google Scholar 

  85. Possemiers S, Marzorati M, Verstraete W, van de Wiele T. Bacteria and chocolate: a successful combination for probiotic delivery. Int J Food Microbiol. 2010;141(1–2):97–103.

    Article  PubMed  CAS  Google Scholar 

  86. Percival RS, Devine DA, Duggal MS, Chartron S, Marsh PD. The effect of cocoa polyphenols on the growth, metabolism, and biofilm formation by Streptococcus mutans and Streptococcus sanguinis. Eur J Oral Sci. 2006;114(4):343–8.

    Article  PubMed  CAS  Google Scholar 

  87. Datla KP, Zbarsky V, Rai D, Parkar S, Osakabe N, Aruoma OI, et al. Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J Am Coll Nutr. 2007;26(4):341–9.

    PubMed  CAS  Google Scholar 

  88. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    PubMed  CAS  Google Scholar 

  89. Parracho H, McCartney AL, Gibson GR. Probiotics and prebiotics in infant nutrition. Proc Nutr Soc. 2007;66(3):405–11.

    Article  PubMed  Google Scholar 

  90. Rastall RA. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol. 2005;52(2):145–52.

    Article  PubMed  CAS  Google Scholar 

  91. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126(6):1620–33.

    Article  PubMed  Google Scholar 

  92. Delzenne NM, Kok N. Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr. 2001;73(2 Suppl):456S–8.

    PubMed  CAS  Google Scholar 

  93. Roberfroid MB. Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr. 1998;80(4):S197–202.

    PubMed  CAS  Google Scholar 

  94. Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol Nutr Food Res. 2005;49(6):609–19.

    Article  PubMed  Google Scholar 

  95. Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics – approaching a definition. Am J Clin Nutr. 2001;73(2 Suppl):361S–4.

    PubMed  CAS  Google Scholar 

  96. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62–72.

    Article  PubMed  CAS  Google Scholar 

  97. Fogliano V, Corollaro ML, Vitaglione P, Napolitano A, Ferracane R, Travaglia F, et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011;55(Suppl 1):S44–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kochhar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martin, FP.J., Collino, S., Rezzi, S., Kochhar, S. (2013). The Effect of Chocolate on Human and Gut Microbial Metabolic Interactions: Emphasis on Human Health and Nutritional Status. In: Watson, R., Preedy, V., Zibadi, S. (eds) Chocolate in Health and Nutrition. Nutrition and Health, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-803-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-803-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-802-3

  • Online ISBN: 978-1-61779-803-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics