Skip to main content

Thin Filament Diseases of Striated Muscle

  • Chapter
  • First Online:
Cytoskeleton and Human Disease
  • 1535 Accesses

Abstract

Mutations in many genes that encode proteins that form or associate with the thin filament of the striated muscle sarcomere cause congenital skeletal and cardiac muscle diseases. These genes include skeletal and cardiac actin, troponin I and T, cardiac troponin C, tropomyosin, nebulin, and cofilin. The pathophysiological features of the skeletal and cardiac diseases are very distinct even in cases where the mutations are in similar regions of the same gene in the two tissues. Furthermore, in skeletal muscle, the pathologies vary widely between muscles even when there is equal expression of the mutated protein. This speaks to the muscle-specific nature of thin filament gene mutations. The recent recognition that cytoskeletal forms of tropomyosins are present in striated muscle raises the possibility that disease phenotypes may be due to mutations in both cytoskeletal and striated muscle isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE, Poulos MA, Tomczak KK, Ryan MM, Iannaccone ST, Crawford TO, Laing NG, Beggs AH (2004) Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol 56:86–96

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal PB, Greenleaf RS, Tomczak KK, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, Laing NG, Darras BT, Maciver SK, Dormitzer PR, Beggs AH (2007) Nemaline myopathy with minicores caused by mutation of the cfl2 gene encoding the skeletal muscle actin-binding protein, Cofilin-2. Am J Hum Genet 80:162–167

    Article  PubMed  CAS  Google Scholar 

  3. Bamshad M, Watkins WS, Zenger RK, Bohnsack JF, Carey JC, Otterud B, Krakowiak PA, Robertson M, Jorde LB (1994) A gene for distal arthrogryposis type I maps to the pericentromeric region of chromosome 9. Am J Hum Genet 55:1153–1158

    PubMed  CAS  Google Scholar 

  4. Baranska B (1999) Formation of the nemaline structures in soleus muscle of rats subjected to long-lasting immobilization. Folia Morphol (Warsz.) 58:207–214

    CAS  Google Scholar 

  5. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002). Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Google Scholar 

  6. Bloch RJ, Gonzalez-Serratos H (2003) Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31:73–78

    Article  PubMed  Google Scholar 

  7. Cagliani R, Fruguglietti ME, Berardinelli A, D’Angelo MG, Prelle A, Riva S, Gorni K, Orcesi S, Lamperti C, Pichiecchio A, Signaroldi E, Tupler R, Magri F, Govoni A, Corti S, Bresolin N, Moggio M, Comi GP (2011) New molecular findings in congenital myopathies due to selenoprotein N gene mutations. J Neurol Sci 300:107–113

    Article  PubMed  CAS  Google Scholar 

  8. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007). Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313:2063–2076

    Google Scholar 

  9. Chang AN, Potter JD (2005). Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 10:225–235

    Google Scholar 

  10. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706

    Article  PubMed  CAS  Google Scholar 

  11. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN (2006) SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 59:546–552

    Article  PubMed  CAS  Google Scholar 

  12. Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ, Nonaka I, Feng JJ, Marston S, North K (2007) The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann Neurol 61:552–561

    Article  PubMed  CAS  Google Scholar 

  13. Clarke NF, Kolski H, Dye DE, Lim E, Smith RL, Patel R, Fahey MC, Bellance R, Romero NB, Johnson ES, Labarre-Vila A, Monnier N, Laing NG, North KN (2008) Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol 63:329–337

    Article  PubMed  CAS  Google Scholar 

  14. Clarke NF, Domazetovska A, Waddell L, Kornberg A, McLean C, North KN (2009) Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscul Disord 19:348–351

    Article  PubMed  Google Scholar 

  15. Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, Muntoni F, Lillis S, Straub V, Bushby K, Guglieri M, King MD, Farrell MA, Marty I, Lunardi J, Monnier N, North KN (2010) Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 31:E1544–E1550

    Article  PubMed  CAS  Google Scholar 

  16. Corbett MA, Robinson CS, Dunglison GF, Yang N, Joya JE, Stewart AW, Schnell C, Gunning PW, North KN, Hardeman EC (2001) A mutation in alpha-tropomyosin(slow) affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy. Hum Mol Genet 10:317–328

    Article  PubMed  CAS  Google Scholar 

  17. Corbett MA, Akkari PA, Domazetovska A, Cooper ST, North KN, Laing NG, Gunning PW, Hardeman EC (2005) An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 57:42–49

    Article  PubMed  CAS  Google Scholar 

  18. Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ, Laing NG, Ampe C, Machesky LM (2004) Myopathy mutations in {alpha}-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117:3367–3377

    Article  PubMed  CAS  Google Scholar 

  19. Coutu P, Bennett CN, Favre EG, Day SM, Metzger JM (2004) Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations. Circ Res 94:1235–1241

    Article  PubMed  CAS  Google Scholar 

  20. Cuisset JM, Maurage CA, Pellissier JF, Barois A, Urtizberea JA, Laing N, Tajsharghi H, Vallee L (2006) ‘Cap myopathy’: case report of a family. Neuromuscul Disord 16:277–281

    Article  PubMed  CAS  Google Scholar 

  21. D’Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ, Boldrini R, Jacques A, Feng JJ, Porfirio B, Sewry CA, Santorelli FM, Limongelli G, Bertini E, Laing N, Marston SB (2006) Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord 16:548–552

    Article  PubMed  Google Scholar 

  22. de Haan A, Van Der Vliet MR, Gommans IM, Hardeman EC, van Engelen BG (2002) Skeletal muscle of mice with a mutation in slow alpha-tropomyosin is weaker at lower lengths. Neuromuscul Disord 12:952–957

    Article  PubMed  CAS  Google Scholar 

  23. De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J, Pellissier JF, Figarella-Branger D, Pouget J (2009) A TPM3 mutation causing cap myopathy. Neuromuscul Disord 19:685–688

    Article  PubMed  Google Scholar 

  24. Donner K, Ollikainen M, Ridanpaa M, Christen HJ, Goebel HH, de Visser M, Pelin K, Wallgren-Pettersson C (2002) Mutations in the beta-tropomyosin (TPM2) gene—a rare cause of nemaline myopathy. Neuromuscul Disord 12:151–158

    Article  PubMed  Google Scholar 

  25. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in t-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    Article  PubMed  CAS  Google Scholar 

  26. Du CK, Morimoto S, Nishii K, Minakami R, Ohta M, Tadano N, Lu QW, Wang YY, Zhan DY, Mochizuki M, Kita S, Miwa Y, Takahashi-Yanaga F, Iwamoto T, Ohtsuki I, Sasaguri T (2007) Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res 101:185–194

    Article  PubMed  CAS  Google Scholar 

  27. Durling HJ, Reilich P, Muller-Hocker J, Mendel B, Pongratz D, Wallgren-Pettersson C, Gunning P, Lochmuller H, Laing NG (2002) De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul Disord 12:947–951

    Article  PubMed  CAS  Google Scholar 

  28. Engel AG, Banker BQ, Franzini-Armstrong C (1994) Ultrastructural changes in diseased muscle. In: Engel AG, Banker BQ, Franzini-Armstrong C (eds) Myology. Basic and clinical. McGraw Hill, Inc., New York, pp 889–1017

    Google Scholar 

  29. Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND (1993) Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A 90:3993–3997

    Article  PubMed  CAS  Google Scholar 

  30. Feinberg DM, Spiro AJ, Weidenheim KM (1998) Distinct light microscopic changes in human immunodeficiency virus-associated nemaline myopathy. Neurology 50:529–531

    Article  PubMed  CAS  Google Scholar 

  31. Ferreiro A, Monnier N, Romero NB, Leroy JP, Bonnemann C, Haenggeli CA, Straub V, Voss WD, Nivoche Y, Jungbluth H, Lemainque A, Voit T, Lunardi J, Fardeau M, Guicheney P (2002a) A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol 51:750–759

    Article  CAS  Google Scholar 

  32. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Estournet B, Richard P, Fardeau M, Guicheney P (2002b) Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 71:739–749

    Article  Google Scholar 

  33. Frey N, Franz WM, Gloeckner K, Degenhardt M, Muller M, Muller O, Merz H, Katus HA (2000) Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovasc Res 47:254–264

    Article  PubMed  CAS  Google Scholar 

  34. Frey N, Brixius K, Schwinger RH, Benis T, Karpowski A, Lorenzen HP, Luedde M, Katus HA, Franz WM (2006) Alterations of tension-dependent ATP utilization in a transgenic rat model of hypertrophic cardiomyopathy. J Biol Chem 281:29575–29582

    Article  PubMed  CAS  Google Scholar 

  35. Fukunaga H, Osame M, Igata A (1980) A case of nemaline myopathy with ophthalmoplegia and mitochondrial abnormalities. J Neurol Sci 46:169–177

    Article  PubMed  CAS  Google Scholar 

  36. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272:731–734

    Article  PubMed  CAS  Google Scholar 

  37. Goebel HH, Warlo I (1997) Nemaline myopathy with intranuclear rods–intranuclear rod myopathy. Neuromuscul Disord 7:13–19

    Article  PubMed  CAS  Google Scholar 

  38. Goebel HH, Piirsoo A, Warlo I, Schofer O, Kehr S, Gaude M (1997) Infantile intranuclear rod myopathy. J Child Neurol 12:22–30

    Article  PubMed  CAS  Google Scholar 

  39. Grounds MD (2008) Two-tiered hypotheses for Duchenne muscular dystrophy. Cell Mol Life Sci 65:1621–1625

    Article  PubMed  CAS  Google Scholar 

  40. Gurgel-Giannetti J, Bang ML, Reed U, Marie S, Zatz M, Labeit S, Vainzof M (2002) Lack of the C-terminal domain of nebulin in a patient with nemaline myopathy. Muscle Nerve 25:747–752

    Article  PubMed  CAS  Google Scholar 

  41. Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J (2010) Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord 20:238–240

    Article  PubMed  Google Scholar 

  42. Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A, Boivin G, Arteaga GM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. Am J Physiol Heart Circ Physiol 293:949–958

    Article  CAS  Google Scholar 

  43. Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, Schaffer AA, Francomano CA, Biesecker LG (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 67:814–821

    Article  PubMed  CAS  Google Scholar 

  44. Joya JE, Kee AJ, Nair-Shalliker V, Ghoddusi M, Nguyen MA, Luther P, Hardeman EC (2004) Muscle weakness in a mouse model of nemaline myopathy can be reversed with exercise and reveals a novel myofiber repair mechanism. Hum Mol Genet 13:2633–2645

    Article  PubMed  CAS  Google Scholar 

  45. Kaindl AM, Ruschendorf F, Krause S, Goebel HH, Koehler K, Becker C, Pongratz D, Muller-Hocker J, Nurnberg P, Stoltenburg-Didinger G, Lochmuller H, Huebner A (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41:842–848

    Article  PubMed  CAS  Google Scholar 

  46. Kalita D (1989) A new treatment for congenital nonprogressive nemaline myopathy. J Orthomol Med 4:70–74

    Google Scholar 

  47. Karpati G, Carpenter S, Eisen AA (1972) Experimental core-like lesions and nemaline rods. A correlative morphological and physiological study. Arch Neurol 27:237–251

    Article  PubMed  CAS  Google Scholar 

  48. Kee AJ, Hardeman EC (2008) Tropomyosins in skeletal muscle diseases. Adv Exp Med Biol 644:143–157

    Article  PubMed  CAS  Google Scholar 

  49. Kee AJ, Schevzov G, Nair-Shalliker V, Robinson CS, Vrhovski B, Ghoddusi M, Qiu MR, Lin JJC, Weinberger R, Gunning PW, Hardeman EC (2004) Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy. J Cell Biol 166:685–696

    Article  PubMed  CAS  Google Scholar 

  50. Kee AJ, Gunning PW, Hardeman EC (2009) Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 30:187–197

    Article  PubMed  CAS  Google Scholar 

  51. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T (1997) Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 16:379–382

    Article  PubMed  CAS  Google Scholar 

  52. Kiphuth IC, Krause S, Huttner HB, Dekomien G, Struffert T, Schroder R (2010) Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. J Neurol 257:658–660

    Article  PubMed  CAS  Google Scholar 

  53. Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, Blumbergs P, White S, Watkins H, Love DR, Haan E (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9:75–79

    Article  PubMed  CAS  Google Scholar 

  54. Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, Shimakawa S, Hagiwara T, Ouvrier R, Sparrow JC, Nishino I, North KN, Nonaka I (2004) Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56:689–964

    Article  PubMed  CAS  Google Scholar 

  55. Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, Winder TL, Lochmuller H, Graziano C, Mitrani-Rosenbaum S, Twomey D, Sparrow JC, Beggs AH, Nowak KJ (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30:1267–1277

    Article  PubMed  CAS  Google Scholar 

  56. Lehtokari VL, Pelin K, Sandbacka M, Ranta S, Donner K, Muntoni F, Sewry C, Angelini C, Bushby K, Van den Bergh P, Iannaccone S, Laing NG, Wallgren-Pettersson C (2006) Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat 27:946–956

    Article  PubMed  CAS  Google Scholar 

  57. Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord 17:433–442

    Article  PubMed  Google Scholar 

  58. Luedde M, Flogel U, Knorr M, Grundt C, Hippe HJ, Brors B, Frank D, Haselmann U, Antony C, Voelkers M, Schrader J, Most P, Lemmer B, Katus HA, Frey N (2009) Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J Mol Med 87:411–422

    Article  PubMed  CAS  Google Scholar 

  59. Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R (1999) A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest 104:1683–1692

    Article  PubMed  CAS  Google Scholar 

  60. McNally EM, Pytel P (2007) Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2:87–109

    Article  PubMed  CAS  Google Scholar 

  61. Meredith C, Herrmann R, Parry C, Liyanage K, Dye DE, Durling HJ, Duff RM, Beckman K, de Visser M, Van Der Graaff MM, Hedera P, Fink JK, Petty EM, Lamont P, Fabian V, Bridges L, Voit T, Mastaglia FL, Laing NG (2004) Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am J Hum Genet 75:703–708

    Article  PubMed  CAS  Google Scholar 

  62. Michele DE, Albayya FP, Metzger JM (1999) A nemaline myopathy mutation in alpha-tropomyosin causes defective regulation of striated muscle force production. J Clin Invest 104:1575–1581

    Article  PubMed  CAS  Google Scholar 

  63. Michele DE, Coutu P, Metzger JM (2002) Divergent abnormal muscle relaxation by hypertrophic cardiomyopathy and nemaline myopathy mutant tropomyosins. Physiol Genomics 9:103–111

    PubMed  CAS  Google Scholar 

  64. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD (1999) Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43

    Article  PubMed  CAS  Google Scholar 

  65. Morris EP, Nneji G, Squire JM (1990) The three-dimensional structure of the nemaline rod Z-band. J Cell Biol 111:2961–2978

    Article  PubMed  CAS  Google Scholar 

  66. Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF (1999) Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res 85:47–56

    Article  PubMed  CAS  Google Scholar 

  67. Nelson SF, Crosbie RH, Miceli MC, Spencer MJ (2009) Emerging genetic therapies to treat Duchenne muscular dystrophy. Curr Opin Neurol 22:532–538

    Article  PubMed  Google Scholar 

  68. Nguyen MA, Hardeman EC (2008) Mouse models for thin filament disease. Adv Exp Med Biol 642:66–77

    Article  PubMed  CAS  Google Scholar 

  69. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hubner C, Oexle K, Anderson JR, Verity CM, North KN, Iannaccone ST, Muller CR, Nurnberg P, Muntoni F, Sewry C, Hughes I, Sutphen R, Lacson AG, Swoboda KJ, Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23:208–212

    Article  PubMed  CAS  Google Scholar 

  70. Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C, Ricoy JR, Jayawant SS, Childs AM, Dobbie JA, Appleton RE, Mountford RC, Walker KR, Clement S, Barois A, Muntoni F, Romero NB, Laing NG (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61:175–184

    Article  PubMed  CAS  Google Scholar 

  71. Oberst L, Zhao G, Park JT, Brugada R, Michael LH, Entman ML, Roberts R, Marian AJ (1998) Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest 102:1498–1505

    Article  PubMed  CAS  Google Scholar 

  72. Ohlsson M, Fidzianska A, Tajsharghi H, Oldfors A (2009) TPM3 mutation in one of the original cases of cap disease. Neurology 72:1961–1963

    Article  PubMed  Google Scholar 

  73. Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33:723–732

    Article  PubMed  CAS  Google Scholar 

  74. Palmer BM, Fishbaugher DE, Schmitt JP, Wang Y, Alpert NR, Seidman CE, Seidman JG, VanBuren P, Maughan DW (2004) Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Am J Physiol Heart Circ Physiol 287:91–99

    Article  Google Scholar 

  75. Patel K, Amthor H (2005) The function of Myostatin and strategies of Myostatin blockade–new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord 15:117–126

    Article  PubMed  CAS  Google Scholar 

  76. Paulus W, Peiffer J, Becker I, Roggendorf W, Schumm F (1988) Adult-onset rod disease with abundant intranuclear rods. J Neurol 235:343–347

    Article  PubMed  CAS  Google Scholar 

  77. Pelin K, Hilpela P, Donner K, Sewry C, Akkari PA, Wilton SD, Wattanasirichaigoon D, Bang ML, Centner T, Hanefeld F, Odent S, Fardeau M, Urtizberea JA, Muntoni F, Dubowitz V, Beggs AH, Laing NG, Labeit S, de la Chapelle A, Wallgren-Pettersson C (1999) Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A 96:2305–2310

    Article  PubMed  CAS  Google Scholar 

  78. Pena JR, Szkudlarek AC, Warren CM, Heinrich LS, Gaffin RD, Jagatheesan G, del Monte F, Hajjar RJ, Goldspink PH, Solaro RJ, Wieczorek DF, Wolska BM (2010) Neonatal gene transfer of Serca2a delays onset of hypertrophic remodeling and improves function in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 49:993–1002

    Article  PubMed  CAS  Google Scholar 

  79. Penisson-Besnier I, Monnier N, Toutain A, Dubas F, Laing N (2007) A second pedigree with autosomal dominant nemaline myopathy caused by TPM3 mutation: A clinical and pathological study. Neuromuscul Disord 17:330–337

    Article  PubMed  Google Scholar 

  80. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33:1815–1828

    Article  PubMed  CAS  Google Scholar 

  81. Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF (2003) A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Mol Cell Biochem 251:33–42

    Article  PubMed  CAS  Google Scholar 

  82. Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 101:205–214

    Article  PubMed  CAS  Google Scholar 

  83. Rifai Z, Kazee AM, Kamp C, Griggs RC (1993) Intranuclear rods in severe congenital nemaline myopathy. Neurology 43:2372–2377

    Article  PubMed  CAS  Google Scholar 

  84. Ryan MM, Ilkovski B, Strickland CD, Schnell C, Sanoudou D, Midgett C, Houston R, Muirhead D, Dennett X, Shield LK, De Girolami U, Iannaccone ST, Laing NG, North KN, Beggs AH (2003) Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology 60:665–673

    Article  PubMed  CAS  Google Scholar 

  85. Ryan MM, Sy C, Rudge S, Ellaway C, Ketteridge D, Roddick LG, Iannaccone ST, Kornberg AJ, North KN (2007) Dietary L-Tyrosine Supplementation in Nemaline Myopathy. J Child Neurol 23:609–613

    Article  PubMed  Google Scholar 

  86. Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289:H2291–H2301

    Article  PubMed  CAS  Google Scholar 

  87. Sambuughin N, Yau KS, Olive M, Duff RM, Bayarsaikhan M, Lu S, Gonzalez-Mera L, Sivadorai P, Nowak KJ, Ravenscroft G, Mastaglia FL, North KN, Ilkovski B, Kremer H, Lammens M, van Engelen BG, Fabian V, Lamont P, Davis MR, Laing NG, Goldfarb LG (2010) Dominant Mutations in KBTBD13, a Member of the BTB/Kelch Family, Cause Nemaline Myopathy with Cores. Am J Hum Genet 87:842–847

    Article  PubMed  CAS  Google Scholar 

  88. Sanoudou D, Haslett JN, Kho AT, Guo S, Gazda HT, Greenberg SA, Lidov HG, Kohane IS, Kunkel LM, Beggs AH (2003) Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci U S A 100:4666–4671

    Article  PubMed  CAS  Google Scholar 

  89. Sanoudou D, Corbett MA, Han M, Ghoddusi M, Nguyen MA, Vlahovich N, Hardeman EC, Beggs AH (2006) Skeletal muscle repair in a mouse model of nemaline myopathy. Hum Mol Genet 15:2603–2612

    Article  PubMed  CAS  Google Scholar 

  90. Schertzer JD, Gehrig SM, Ryall JG, Lynch GS (2007) Modulation of Insulin-like Growth Factor (IGF)-I and IGF-Binding Protein Interactions Enhances Skeletal Muscle Regeneration and Ameliorates the Dystrophic Pathology in mdx Mice. Am J Path 1771:1180–1188

    Article  CAS  Google Scholar 

  91. Sewry CA, Muller C, Davis M, Dwyer JS, Dove J, Evans G, Schroder R, Furst D, Helliwell T, Laing N, Quinlivan RC (2002) The spectrum of pathology in central core disease. Neuromuscul Disord 12:930–938

    Article  PubMed  CAS  Google Scholar 

  92. Shafiq SA, Dubowitz V, Peterson HC, Milhorat AT (1967) Nemaline myopathy: report of a fatal case, with histochemical and electron microscopic studies. Brain 90:817–828

    Article  PubMed  CAS  Google Scholar 

  93. Shimomura C, Nonaka I (1989) Nemaline myopathy: comparative muscle histochemistry in the severe neonatal, moderate congenital, and adult-onset forms. Pediatr Neurol 5:25–31

    Article  PubMed  CAS  Google Scholar 

  94. Song W, Dyer E, Stuckey D, Leung MC, Memo M, Mansfield C, Ferenczi M, Liu K, Redwood C, Nowak K, Harding S, Clarke K, Wells D, Marston S (2010) Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J Mol Cell Cardiol 49:380–389

    Article  PubMed  CAS  Google Scholar 

  95. Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C, Romero N, Nonaka I, Laing NG (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord 13:519–531

    Article  PubMed  Google Scholar 

  96. Sung SS, Brassington AM, Grannatt K, Rutherford A, Whitby FG, Krakowiak PA, Jorde LB, Carey JC, Bamshad M (2003a) Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 72:681–690

    Article  CAS  Google Scholar 

  97. Sung SS, Brassington AM, Krakowiak PA, Carey JC, Jorde LB, Bamshad M (2003b) Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am J Hum Genet 73:212–214

    Article  Google Scholar 

  98. Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64:1334–1338

    Article  PubMed  Google Scholar 

  99. Tan P, Briner J, Boltshauser E, Davis MR, Wilton SD, North K, Wallgren-Pettersson C, Laing NG (1999) Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9:573–579

    Article  PubMed  CAS  Google Scholar 

  100. Tardiff JC (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev 10:237–248

    Article  PubMed  CAS  Google Scholar 

  101. Tardiff JC, Factor SM, Tompkins BD, Hewett TE, Palmer BM, Moore RL, Schwartz S, Robbins J, Leinwand LA (1998) A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest 101:2800–2811

    Article  PubMed  CAS  Google Scholar 

  102. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA (1999) Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest 104:469–481

    Article  PubMed  CAS  Google Scholar 

  103. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE (1994) Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77:701–712

    Article  PubMed  Google Scholar 

  104. Vlahovich N, Kee AJ, Van Der Poel C, Kettle E, Hernandez-Deviez D, Lucas C, Lynch GS, Parton RG, Gunning PW, Hardeman EC (2009) Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation-contraction Coupling in Skeletal Muscle. Mol Biol Cell 20:400–409

    Article  PubMed  CAS  Google Scholar 

  105. Waddell LB, Kreissl M, Kornberg A, Kennedy P, McLean C, Labarre-Vila A, Monnier N, North KN, Clarke NF (2010) Evidence for a dominant negative disease mechanism in cap myopathy due to TPM3. Neuromuscul Disord 20:464–466

    Article  PubMed  Google Scholar 

  106. Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R, Molnar Z, Szabo M, Hashimoto K, Reina C, De Carlos J, Rosell J, Cabello A, Navarro C, Nishino I, Lochmuller H, Laing NG (2006) Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord 16:541–547

    Article  PubMed  Google Scholar 

  107. Wallgren-Pettersson C (1998) 58th ENMC workshop: myotubular myopathy 20–22 March, 1998, Naarden, The Netherlands. Neuromuscul Disord 8:521–525

    Article  PubMed  CAS  Google Scholar 

  108. Wallgren-Pettersson C, Rapola J, Donner M (1988) Pathology of congenital nemaline myopathy. A follow-up study. J Neurol Sci 83:243–257

    Article  PubMed  CAS  Google Scholar 

  109. Wallgren-Pettersson C, Pelin K, Nowak KJ, Muntoni F, Romero NB, Goebel HH, North KN, Beggs AH, Laing NG, Myopathy EICON (2004) Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 14:461–470

    Article  PubMed  Google Scholar 

  110. Wallgren-Pettersson C, Lehtokari VL, Kalimo H, Paetau A, Nuutinen E, Hackman P, Sewry C, Pelin K, Udd B (2007) Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 130:1465–1476

    Article  PubMed  Google Scholar 

  111. Wattanasirichaigoon D, Swoboda KJ, Takada F, Tong HQ, Lip V, Iannaccone ST, Wallgren-Pettersson C, Laing NG, Beggs AH (2002) Mutations of the slow muscle alpha-tropomyosin gene, TPM3, are a rare cause of nemaline myopathy. Neurology 59:613–617

    Article  PubMed  CAS  Google Scholar 

  112. Wen Y, Pinto JR, Gomes AV, Xu Y, Wang Y, Potter JD, Kerrick WG (2008) Functional consequences of the human cardiac troponin I hypertrophic cardiomyopathy mutation R145G in transgenic mice. J Biol Chem 283:20484–20494

    Article  PubMed  CAS  Google Scholar 

  113. Wen Y, Xu Y, Wang Y, Pinto JR, Potter JD, Kerrick WG (2009) Functional effects of a restrictive-cardiomyopathy-linked cardiac troponin I mutation (R145W) in transgenic mice. J Mol Biol 392:1158–1167

    Article  PubMed  CAS  Google Scholar 

  114. Wieczorek DF, Jagatheesan G, Rajan S (2008) The role of tropomyosin in heart disease. Adv Exp Med Biol 644:132–142

    Article  PubMed  CAS  Google Scholar 

  115. Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM and RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48:882–892

    Article  PubMed  CAS  Google Scholar 

  116. Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, Britt BA, Browell AK, MacLennan DH (1993) A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 5:46–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna C. Hardeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kee, A.J., Hardeman, E.C. (2012). Thin Filament Diseases of Striated Muscle. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_6

Download citation

Publish with us

Policies and ethics