Skip to main content

Efficient Approaches for Generating GFP Fusion and Epitope-Tagging Constructs in Filamentous Fungi

  • Protocol
  • First Online:
Fungal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 722))

Abstract

For functional characterization of predicted genes encoding hypothetical proteins in fungal genomes, it is complementary to genetic studies to determine their expression and subcellular localization patterns in different developmental or infection stages. It is also important to identify and characterize other proteins that are physically associated with or functionally related to these genes in vivo by co-immunoprecipitation or affinity purification analyses. In this chapter, we described a set of yeast shuttle vectors and protocols to generate fusion constructs by the yeast gap repair approach. Because of the simplicity and efficiency of yeast gap repair, these vectors and the general methods described in this chapter are suitable for functional genomics studies in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, J. R., Peng, Y. L., Dickman, M. B., and Sharon, A. (2006) The dawn of fungal pathogen genomics, Ann. Rev. Phytopathol. 44, 337–366.

    Article  CAS  Google Scholar 

  2. Ebbole, D. J. (2007) Magnaporthe as a model for understanding host-pathogen interactions, Annu. Rev. Phytopathol. 45, 437–456.

    Article  PubMed  CAS  Google Scholar 

  3. Xu, J. R., Zhao, X., and Dean, R. A. (2007) From genes to genomes; a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae, Adv. Genet. 57, 175–218.

    Article  PubMed  CAS  Google Scholar 

  4. Raymond, C. K., Sims, E. H., and Olson, M. V. (2002) Linker-mediated recombinational subcloning of large DNA fragments using yeast, Genome Res. 12, 190–197.

    Article  PubMed  CAS  Google Scholar 

  5. Raymond, C. K., Mugford, V. R., and Sexson, S. L. (1999) Plasmid topologies that enhance the transformation efficiency of yeast, Biotechniques 27, 892–894, 896.

    PubMed  CAS  Google Scholar 

  6. Bourett, T. M., Sweigard, J. A., Czymmek, K. J., Carroll, A., and Howard, R. J. (2002) Reef coral fluorescent proteins for visualizing fungal pathogens, Fungal Genet. Biol. 37, 211–220.

    Article  PubMed  CAS  Google Scholar 

  7. Bruno, K. S., Tenjo, F., Li, L., Hamer, J. E., and Xu, J. R. (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea, Eukaryot. Cell 3, 1525–1532.

    Article  PubMed  CAS  Google Scholar 

  8. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry, Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao, X. H., and Xu, J. R. (2007) A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea, Mol. Microbiol. 63, 881–894.

    Article  PubMed  CAS  Google Scholar 

  10. Seong, K., Li, L., Hou, Z. M., Tracy, M., Kistler, H. C., and Xu, J. R. (2006) Cryptic promoter activity in the coding region of the HMG-CoA rediactase gene in Fusarium graminearum, Fungal Genet. Biol. 43, 34–41.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, G., Jansen, G., Thomas, D. Y., Hollenberg, C. P., and Rad, M. R. (1996) Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae, Mol. Microbiol. 20, 773–783.

    Article  PubMed  CAS  Google Scholar 

  12. Chao, C. C. T., and Ellingboe, A. H. (1991) Selection for mating competence in Magnaporthe grisea pathogenic to rice, Can. J. Bot. 69, 2130–2134.

    Article  Google Scholar 

  13. Sweigard, J. A., Chumley, F. G., and Valent, B. (1992) Disruption of a Magnaporthe grisea cutinase gene, Mol. Gen. Genet. 232, 183–190.

    PubMed  CAS  Google Scholar 

  14. Sambrook, J., and Russell, D. (2001) Molecular Cloning – A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Flora Urmeev at Purdue University for assistance in constructing the yeast shuttle vectors. This work was supported by a USDA-NRI grant 2005-35319-16073 and grants from the USWBSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Rong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, X., Li, G., Xu, JR. (2011). Efficient Approaches for Generating GFP Fusion and Epitope-Tagging Constructs in Filamentous Fungi. In: Xu, JR., Bluhm, B. (eds) Fungal Genomics. Methods in Molecular Biology, vol 722. Humana Press. https://doi.org/10.1007/978-1-61779-040-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-040-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-039-3

  • Online ISBN: 978-1-61779-040-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics