Skip to main content

Recombinant Protein Expression in Nicotiana

  • Protocol
  • First Online:
Plant Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horsch, R. B., Rogers, S. G., and Fraley, R. T. (1985) Transgenic plants, Cold Spring Harb Symp Quant Biol 50, 433–437.

    Article  PubMed  CAS  Google Scholar 

  2. Karg, S. R. and Kallio, P. T. (2009) The production of biopharmaceuticals in plant systems, Biotechnol Adv 27(6), 879–894.

    Article  PubMed  CAS  Google Scholar 

  3. Mett, V., Farrance, C. E., Green, B. J., and Yusibov, V. (2008) Plants as biofactories, Biologicals 36, 354–358.

    Article  PubMed  Google Scholar 

  4. Lienard, D., Sourrouille, C., Gomord, V., and Faye, L. (2007) Pharming and transgenic plants, Biotechnol Annu Rev 13, 115–147.

    Article  PubMed  CAS  Google Scholar 

  5. Boehm, R. (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms, Ann NY Acad Sci 1102, 121–134.

    Article  PubMed  CAS  Google Scholar 

  6. Ma, J. K., Chikwamba, R., Sparrow, P., Fischer, R., Mahoney, R., and Twyman, R. M. (2005) Plant-derived pharmaceuticals – the road forward, Trends Plant Sci 10, 580–585.

    Article  PubMed  CAS  Google Scholar 

  7. Hiatt, A., Cafferkey, R., and Bowdish, K. (1989) Production of antibodies in transgenic plants, Nature 342, 76–78.

    Article  PubMed  CAS  Google Scholar 

  8. Aviezer, D., Brill-Almon, E., Shaaltiel, Y., Hashmueli, S., Bartfeld, D., Mizrachi, S., Liberman, Y., Freeman, A., Zimran, A., and Galun, E. (2009) A plant-derived recombinant human glucocerebrosidase enzyme – a preclinical and phase I investigation, PLoS One 4, e4792.

    Article  PubMed  CAS  Google Scholar 

  9. Kaiser, J. (2008) Is the drought over for pharming? Science 320, 473–475.

    Article  PubMed  CAS  Google Scholar 

  10. McCormick, A. A., Reddy, S., Reinl, S. J., Cameron, T. I., Czerwinkski, D. K., Vojdani, F., Hanley, K. M., Garger, S. J., White, E. L., Novak, J., Barrett, J., Holtz, R. B., Tuse, D., and Levy, R. (2008) Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study, Proc Natl Acad Sci USA 105, 10131–10136.

    Article  PubMed  CAS  Google Scholar 

  11. Sparrow, P. A. and Twyman, R. M. (2009) Biosafety, risk assessment and regulation of plant-made pharmaceuticals, Methods Mol Biol 483, 341–353.

    Article  PubMed  Google Scholar 

  12. Vancanneyt, G., Dubald, M., Schroder, W., Peters, J., and Botterman, J. (2009) A case study for plant-made pharmaceuticals comparing different plant expression and production systems, Methods Mol Biol 483, 209–221.

    Article  PubMed  CAS  Google Scholar 

  13. Hellwig, S., Drossard, J., Twyman, R. M., and Fischer, R. (2004) Plant cell cultures for the production of recombinant proteins, Nat Biotechnol 22, 1415–1422.

    Article  PubMed  CAS  Google Scholar 

  14. Shaaltiel, Y., Bartfeld, D., Hashmueli, S., Baum, G., Brill-Almon, E., Galili, G., Dym, O., Boldin-Adamsky, S. A., Silman, I., Sussman, J. L., Futerman, A. H., and Aviezer, D. (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system, Plant Biotechnol J 5, 579–590.

    Article  PubMed  CAS  Google Scholar 

  15. Plasson, C., Michel, R., Lienard, D., Saint-Jore-Dupas, C., Sourrouille, C., de March, G. G., and Gomord, V. (2009) Production of recombinant proteins in suspension-cultured plant cells, Methods Mol Biol 483, 145–161.

    Article  PubMed  CAS  Google Scholar 

  16. Decker, E. L. and Reski, R. (2007) Moss bioreactors producing improved biopharmaceuticals, Curr Opin Biotechnol 18, 393–398.

    Article  PubMed  CAS  Google Scholar 

  17. Decker, E. L. and Reski, R. (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors, Bioprocess Biosyst Eng 31, 3–9.

    Article  PubMed  CAS  Google Scholar 

  18. Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A., and Fernandez, E. (2004) Transgenic microalgae as green cell-factories, Trends Biotechnol 22, 45–52.

    Article  PubMed  CAS  Google Scholar 

  19. Lico, C., Chen, Q., and Santi, L. (2008) Viral vectors for production of recombinant proteins in plants, J Cell Physiol 216, 366–377.

    Article  PubMed  CAS  Google Scholar 

  20. Gleba, Y., Klimyuk, V., and Marillonnet, S. (2007) Viral vectors for the expression of proteins in plants, Curr Opin Biotechnol 18, 134–141.

    Article  PubMed  CAS  Google Scholar 

  21. Ma, J. K., Drake, P. M., Chargelegue, D., Obregon, P., and Prada, A. (2005) Antibody processing and engineering in plants, and new strategies for vaccine production, Vaccine 23, 1814–1818.

    Article  PubMed  CAS  Google Scholar 

  22. Gomord, V., Chamberlain, P., Jefferis, R., and Faye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities, Trends Biotechnol 23, 559–565.

    Article  PubMed  CAS  Google Scholar 

  23. Daniell, H. (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome, Biotechnol J 1, 1071–1079.

    Article  PubMed  CAS  Google Scholar 

  24. Goodin, M. M., Zaitlin, D., Naidu, R. A., and Lommel, S. A. (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions, Mol Plant Microbe Interact 21, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, M. L., Lindbo, J. A., Dillard-Telm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., Nguyen, L. V., and Palmer, K. E. (2006) Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications, Virology 348, 475–488.

    Article  PubMed  CAS  Google Scholar 

  26. Pogue, G. P., Lindbo, J. A., Garger, S. J., and Fitzmaurice, W. P. (2002) Making an ally from an enemy: plant virology and the new agriculture, Annu Rev Phytopathol 40, 45–74.

    Article  PubMed  CAS  Google Scholar 

  27. Gleba, Y., Klimyuk, V., and Marillonnet, S. (2005) Magnifection – a new platform for expressing recombinant vaccines in plants, Vaccine 23, 2042–2048.

    Article  PubMed  CAS  Google Scholar 

  28. Yusibov, V. and Rabindran, S. (2008) Recent progress in the development of plant derived vaccines, Expert Rev Vaccines 7, 1173–1183.

    Article  PubMed  Google Scholar 

  29. Ko, K., Brodzik, R., and Steplewski, Z. (2009) Production of antibodies in plants: approaches and perspectives, Curr Top Microbiol Immunol 332, 55–78.

    Article  PubMed  CAS  Google Scholar 

  30. O’Keefe, B. R., Vojdani, F., Buffa, V., Shattock, R. J., Montefiori, D. C., Bakke, J., Mirsalis, J., d’Andrea, A. L., Hume, S. D., Bratcher, B., Saucedo, C. J., McMahon, J. B., Pogue, G. P., and Palmer, K. E. (2009) Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component, Proc Natl Acad Sci USA 106(15), 6099–6104.

    Article  PubMed  Google Scholar 

  31. Clemente, T. (2006) Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana), Methods Mol Biol 343, 143–154.

    PubMed  Google Scholar 

  32. Matoba, N., Kajiura, H., Cherni, I., Doran, J. D., Bomsel, M., Fujiyama, K., and Mor, T. S. (2009) Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR(649–684), Plant Biotechnol J 7, 129–145.

    Article  PubMed  CAS  Google Scholar 

  33. Tackaberry, E. S., Prior, F., Bell, M., Tocchi, M., Porter, S., Mehic, J., Ganz, P. R., Sardana, R., Altosaar, I., and Dudani, A. (2003) Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground, Genome 46, 521–526.

    Article  PubMed  CAS  Google Scholar 

  34. De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., and Depicker, A. (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing, Plant Mol Biol 43, 347–359.

    Article  PubMed  Google Scholar 

  35. Maliga, P. (2004) Plastid transformation in higher plants, Annu Rev Plant Biol 55, 289–313.

    Article  PubMed  CAS  Google Scholar 

  36. Verma, D., Samson, N. P., Koya, V., and Daniell, H. (2008) A protocol for expression of foreign genes in chloroplasts, Nat Protoc 3, 739–758.

    Article  PubMed  CAS  Google Scholar 

  37. Staub, J. M. and Maliga, P. (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids, Plant J 7, 845–848.

    Article  PubMed  CAS  Google Scholar 

  38. Kang, T. J., Han, S. C., Kim, M. Y., Kim, Y. S., and Yang, M. S. (2004) Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts, Protein Expr Purif 38, 123–128.

    Article  PubMed  CAS  Google Scholar 

  39. De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals, Nat Biotechnol 19, 71–74.

    Article  PubMed  Google Scholar 

  40. Rich, J. R. and Withers, S. G. (2009) Emerging methods for the production of homogeneous human glycoproteins, Nat Chem Biol 5, 206–215.

    Article  PubMed  CAS  Google Scholar 

  41. Shih, S. M. and Doran, P. M. (2009) Foreign protein production using plant cell and organ cultures: advantages and limitations, Biotechnol Adv 27(6), 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  42. Smetanska, I. (2008) Production of secondary metabolites using plant cell cultures, Adv Biochem Eng Biotechnol 111, 187–228.

    PubMed  CAS  Google Scholar 

  43. Mishra, B. N. and Ranjan, R. (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites, Biotechnol Appl Biochem 49, 1–10.

    Article  PubMed  CAS  Google Scholar 

  44. Gaume, A., Komarnytsky, S., Borisjuk, N., and Raskin, I. (2003) Rhizosecretion of recombinant proteins from plant hairy roots, Plant Cell Rep 21, 1188–1193.

    Article  PubMed  CAS  Google Scholar 

  45. Woods, R. R., Geyer, B. C., and Mor, T. S. (2008) Hairy-root organ cultures for the production of human acetylcholinesterase, BMC Biotechnol 8, 95.

    Article  PubMed  CAS  Google Scholar 

  46. Sourrouille, C., Marshall, B., Lienard, D., and Faye, L. (2009) From Neanderthal to nanobiotech: from plant potions to pharming with plant factories, Methods Mol Biol 483, 1–23.

    Article  PubMed  CAS  Google Scholar 

  47. Smith, M. L., Fitzmaurice, W. P., Turpen, T. H., and Palmer, K. E. (2009) Display of peptides on the surface of tobacco mosaic virus particles, Curr Top Microbiol Immunol 332, 13–31.

    Article  PubMed  CAS  Google Scholar 

  48. Wagner, B., Fuchs, H., Adhami, F., Ma, Y., Scheiner, O., and Breiteneder, H. (2004) Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana, Methods 32, 227–234.

    Article  PubMed  CAS  Google Scholar 

  49. Avesani, L., Marconi, G., Morandini, F., Albertini, E., Bruschetta, M., Bortesi, L., Pezzotti, M., and Porceddu, A. (2007) Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment, Transgenic Res 16, 587–597.

    Article  PubMed  CAS  Google Scholar 

  50. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y. (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium, Proc Natl Acad Sci USA 101, 6852–6857.

    Article  PubMed  CAS  Google Scholar 

  51. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants, Nat Biotechnol 23, 718–723.

    Article  PubMed  CAS  Google Scholar 

  52. Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors, Proc Natl Acad Sci USA 103, 14701–14706.

    Article  PubMed  CAS  Google Scholar 

  53. Hiatt, A. and Pauly, M. (2006) Monoclonal antibodies from plants: a new speed record, Proc Natl Acad Sci USA 103, 14645–14646.

    Article  PubMed  CAS  Google Scholar 

  54. Matoba, N., Magerus, A., Geyer, B. C., Zhang, Y., Muralidharan, M., Alfsen, A., Arntzen, C. J., Bomsel, M., and Mor, T. S. (2004) A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs, Proc Natl Acad Sci USA 101, 13584–13589.

    Article  PubMed  CAS  Google Scholar 

  55. Vezina, L. P., Faye, L., Lerouge, P., D’Aoust, M. A., Marquet-Blouin, E., Burel, C., Lavoie, P. O., Bardor, M., and Gomord, V. (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants, Plant Biotechnol J 7, 442–455.

    Article  PubMed  CAS  Google Scholar 

  56. Villani, M. E., Morgun, B., Brunetti, P., Marusic, C., Lombardi, R., Pisoni, I., Bacci, C., Desiderio, A., Benvenuto, E., and Donini, M. (2009) Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies, Plant Biotechnol J 7, 59–72.

    Article  PubMed  CAS  Google Scholar 

  57. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus, Plant J 33, 949–956.

    Article  PubMed  CAS  Google Scholar 

  58. Ma, P., Liu, J., He, H., Yang, M., Li, M., Zhu, X., and Wang, X. (2009) A viral suppressor P1/HC-pro increases the GFP gene expression in agrobacterium-mediated transient assay, Appl Biochem Biotechnol 158, 243–252.

    Article  PubMed  CAS  Google Scholar 

  59. Wydro, M., Kozubek, E., and Lehmann, P. (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana, Acta Biochim Pol 53, 289–298.

    PubMed  CAS  Google Scholar 

  60. Huang, Z., Chen, Q., Hjelm, B., Arntzen, C., and Mason, H. (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants, Biotechnol Bioeng 103, 706–714.

    Article  PubMed  CAS  Google Scholar 

  61. Wroblewski, T., Tomczak, A., and Michelmore, R. (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis, Plant Biotechnol J 3, 259–273.

    Article  PubMed  CAS  Google Scholar 

  62. Plesha, M. A., Huang, T. K., Dandekar, A. M., Falk, B. W., and McDonald, K. A. (2009) Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system, Biotechnol Prog 25, 722–734.

    Article  PubMed  CAS  Google Scholar 

  63. Medrano, G., Reidy, M. J., Liu, J., Ayala, J., Dolan, M. C., and Cramer, C. L. (2009) Rapid system for evaluating bioproduction capacity of complex pharmaceutical proteins in plants, Methods Mol Biol 483, 51–67.

    Article  PubMed  CAS  Google Scholar 

  64. D’Aoust, M. A., Lavoie, P. O., Belles-Isles, J., Bechtold, N., Martel, M., and Vezina, L. P. (2009) Transient expression of antibodies in plants using syringe agroinfiltration, Methods Mol Biol 483, 41–50.

    Article  PubMed  CAS  Google Scholar 

  65. Sainsbury, F., Liu, L., and Lomonossoff, G. P. (2009) Cowpea mosaic virus-based systems for the expression of antigens and antibodies in plants, Methods Mol Biol 483, 25–39.

    Article  PubMed  CAS  Google Scholar 

  66. Sorensen, H. P. and Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli, J Biotechnol 115, 113–128.

    Article  PubMed  CAS  Google Scholar 

  67. Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat Biotechnol 23, 567–575.

    Article  PubMed  CAS  Google Scholar 

  68. Chiba, Y. and Akeboshi, H. (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells, Biol Pharm Bull 32, 786–795.

    Article  PubMed  CAS  Google Scholar 

  69. Mohan, C., Kim, Y. G., Koo, J., and Lee, G. M. (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells, Biotechnol J 3, 624–630.

    Article  PubMed  CAS  Google Scholar 

  70. Fitzmaurice, W. P. (2002) Interspecific Nicotiana hybrids and their progeny, Large Scale Biology Corporation, United States.

    Google Scholar 

  71. Sheludko, Y. V., Sindarovska, Y. R., Gerasymenko, I. M., Bannikova, M. A., and Kuchuk, N. V. (2007) Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression, Biotechnol Bioeng 96, 608–614.

    Article  PubMed  CAS  Google Scholar 

  72. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., and Burgyan, J. (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs, EMBO J 21, 3070–3080.

    Article  PubMed  CAS  Google Scholar 

  73. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C., and Voinnet, O. (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing, Plant Cell 16, 1235–1250.

    Article  PubMed  CAS  Google Scholar 

  74. Alvarez, M. L., Pinyerd, H. L., Topal, E., and Cardineau, G. A. (2008) P19-dependent and P19-independent reversion of F1-V gene silencing in tomato, Plant Mol Biol 68, 61–79.

    Article  PubMed  CAS  Google Scholar 

  75. Raju, T. S. (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs, Curr Opin Immunol 20, 471–478.

    Article  PubMed  CAS  Google Scholar 

  76. Saint-Jore-Dupas, C., Faye, L., and Gomord, V. (2007) From planta to pharma with glycosylation in the toolbox, Trends Biotechnol 25, 317–323.

    Article  PubMed  CAS  Google Scholar 

  77. Jin, C., Altmann, F., Strasser, R., Mach, L., Schahs, M., Kunert, R., Rademacher, T., Glossl, J., and Steinkellner, H. (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits, Glycobiology 18, 235–241.

    Article  PubMed  CAS  Google Scholar 

  78. Bencurova, M., Hemmer, W., Focke-Tejkl, M., Wilson, I. B., and Altmann, F. (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin, Glycobiology 14, 457–466.

    Article  PubMed  CAS  Google Scholar 

  79. Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H. (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure, Plant Biotechnol J 6, 392–402.

    Article  PubMed  CAS  Google Scholar 

  80. Strasser, R., Castilho, A., Stadlmann, J., Kunert, R., Quendler, H., Gattinger, P., Jez, J., Rademacher, T., Altmann, F., Mach, L., and Steinkellner, H. (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous {beta}1,4-galactosylated N-glycan profile, J Biol Chem 284, 20479–20485.

    Article  PubMed  CAS  Google Scholar 

  81. Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., and Michaud, D. (2008) Preventing unintended proteolysis in plant protein biofactories, Plant Biotechnol J 6, 633–648.

    Article  PubMed  CAS  Google Scholar 

  82. Idiris, A., Bi, K., Tohda, H., Kumagai, H., and Giga-Hama, Y. (2006) Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins, Yeast 23, 83–99.

    Article  PubMed  CAS  Google Scholar 

  83. Kuroda, K., Kitagawa, Y., Kobayashi, K., Tsumura, H., Komeda, T., Mori, E., Motoki, K., Kataoka, S., Chiba, Y., and Jigami, Y. (2007) Antibody expression in protease-deficient strains of the methylotrophic yeast Ogataea minuta, FEMS Yeast Res 7, 1307–1316.

    Article  PubMed  CAS  Google Scholar 

  84. Rivard, D., Anguenot, R., Brunelle, F., Le, V. Q., Vezina, L. P., Trepanier, S., and Michaud, D. (2006) An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants, Plant Biotechnol J 4, 359–368.

    Article  PubMed  CAS  Google Scholar 

  85. Benchabane, M., Rivard, D., Girard, C., and Michaud, D. (2009) Companion protease inhibitors to protect recombinant proteins in transgenic plant extracts, Methods Mol Biol 483, 265–273.

    Article  PubMed  CAS  Google Scholar 

  86. Nuttall, J., Vine, N., Hadlington, J. L., Drake, P., Frigerio, L., and Ma, J. K. (2002) ER-resident chaperone interactions with recombinant antibodies in transgenic plants, Eur J Biochem 269, 6042–6051.

    Article  PubMed  CAS  Google Scholar 

  87. Sharma, S. K., Christen, P., and Goloubinoff, P. (2009) Disaggregating chaperones: an unfolding story, Curr Protein Pept Sci 10(5), 432–446.

    Article  PubMed  CAS  Google Scholar 

  88. Liu, D. (2009) Design of gene constructs for transgenic maize, Methods Mol Biol 526, 3–20.

    Article  PubMed  CAS  Google Scholar 

  89. Gustafsson, C., Govindarajan, S., and Minshull, J. (2004) Codon bias and heterologous protein expression, Trends Biotechnol 22, 346–353.

    Article  PubMed  CAS  Google Scholar 

  90. Sharp, P. M. and Li, W. H. (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res 15, 1281–1295.

    Article  PubMed  CAS  Google Scholar 

  91. Geyer, B. C., Fletcher, S. P., Griffin, T. A., Lopker, M. J., Soreq, H., and Mor, T. S. (2007) Translational control of recombinant human acetylcholinesterase accumulation in plants, BMC Biotechnol 7, 27.

    Article  PubMed  CAS  Google Scholar 

  92. Komar, A. A., Lesnik, T., and Reiss, C. (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation, FEBS Lett 462, 387–391.

    Article  PubMed  CAS  Google Scholar 

  93. Thanaraj, T. A. and Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization, Protein Sci 5, 1594–1612.

    Article  PubMed  CAS  Google Scholar 

  94. Joshi, C. P., Zhou, H., Huang, X., and Chiang, V. L. (1997) Context sequences of translation initiation codon in plants, Plant Mol Biol 35, 993–1001.

    Article  PubMed  CAS  Google Scholar 

  95. Kozak, M. (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs, Nucleic Acids Res 12, 857–872.

    Article  PubMed  CAS  Google Scholar 

  96. Nakagawa, S., Niimura, Y., Gojobori, T., Tanaka, H., and Miura, K. (2008) Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes, Nucleic Acids Res 36, 861–871.

    Article  PubMed  CAS  Google Scholar 

  97. Kochetov, A. V., Palyanov, A., Titov, II, Grigorovich, D., Sarai, A., and Kolchanov, N. A. (2007) AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site, BMC Bioinformatics 8, 318.

    Article  CAS  Google Scholar 

  98. Sawant, S. V., Kiran, K., Singh, P. K., and Tuli, R. (2001) Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants, Plant Physiol 126, 1630–1636.

    Article  PubMed  CAS  Google Scholar 

  99. Burgyan, J. (2008) Role of silencing suppressor proteins, Methods Mol Biol 451, 69–79.

    Article  PubMed  CAS  Google Scholar 

  100. Streatfield, S. J. (2007) Approaches to achieve high-level heterologous protein production in plants, Plant Biotechnol J 5, 2–15.

    Article  PubMed  CAS  Google Scholar 

  101. Kermode, A. R. (2006) Plants as factories for production of biopharmaceutical and bioindustrial proteins: lessons from cell biology, Can J Bot 84, 679–694.

    Article  CAS  Google Scholar 

  102. Conley, A. J., Joensuu, J. J., Menassa, R., and Brandle, J. E. (2009) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions, BMC Biol 7, 48.

    Article  PubMed  CAS  Google Scholar 

  103. de Virgilio, M., De Marchis, F., Bellucci, M., Mainieri, D., Rossi, M., Benvenuto, E., Arcioni, S., and Vitale, A. (2008) The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin, J Exp Bot 59, 2815–2829.

    Article  PubMed  CAS  Google Scholar 

  104. Torrent, M., Llompart, B., Lasserre-Ramassamy, S., Llop-Tous, I., Bastida, M., Marzabal, P., Westerholm-Parvinen, A., Saloheimo, M., Heifetz, P. B., and Ludevid, M. D. (2009) Eukaryotic protein production in designed storage organelles, BMC Biol 7, 5.

    Article  PubMed  CAS  Google Scholar 

  105. Drake, P. M., Barbi, T., Sexton, A., McGowan, E., Stadlmann, J., Navarre, C., Paul, M. J., and Ma, J. K. (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco, FASEB J 23(10), 3581–3589.

    Article  PubMed  CAS  Google Scholar 

  106. McCormick, A. A., Reinl, S. J., Cameron, T. I., Vojdani, F., Fronefield, M., Levy, R., and Tuse, D. (2003) Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig, J Immunol Methods 278, 95–104.

    Article  PubMed  CAS  Google Scholar 

  107. McCormick, A. A., Kumagai, M. H., Hanley, K., Turpen, T. H., Hakim, I., Grill, L. K., Tuse, D., Levy, S., and Levy, R. (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants, Proc Natl Acad Sci USA 96, 703–708.

    Article  PubMed  CAS  Google Scholar 

  108. Du, H., Cameron, T. L., Garger, S. J., Pogue, G. P., Hamm, L. A., White, E., Hanley, K. M., and Grabowski, G. A. (2008) Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice, J Lipid Res 49, 1646–1657.

    Article  PubMed  CAS  Google Scholar 

  109. Gegenheimer, P. (1990) Preparation of extracts from plants, Methods Enzymol 182, 174–193.

    Article  PubMed  CAS  Google Scholar 

  110. Platis, D. and Labrou, N. E. (2009) Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract, Biotechnol J 4(9), 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  111. Platis, D. and Labrou, N. E. (2006) Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract, J Chromatogr 1128, 114–124.

    Article  CAS  Google Scholar 

  112. Platis, D., Drossard, J., Fischer, R., Ma, J. K., and Labrou, N. E. (2008) New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants, J Chromatogr 1211, 80–89.

    Article  CAS  Google Scholar 

  113. Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution, J Biol Chem 256, 1604–1607.

    PubMed  CAS  Google Scholar 

  114. Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., and Gleba, Y. (2006) Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A, Proc Natl Acad Sci USA 103, 17678–17683.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Andrew Marsh for editorial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matoba, N., Davis, K.R., Palmer, K.E. (2011). Recombinant Protein Expression in Nicotiana . In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics