Skip to main content

Determination of Membrane Protein Structures Using Solution and Solid-State NMR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

NMR is an essential tool to characterize the structure, dynamics, and interactions of biomolecules at an atomic level. Its application to membrane protein (MP) structure determination is challenging and currently an active and rapidly developing field. Main difficulties are the low sensitivity of the technique, the size limitation, and the intrinsic motional properties of the system under investigation. Solution and solid-state NMR (ssNMR) have common and own specific requirements. Solution NMR requires a careful choice of the detergent, elaborated stable isotope labelling schemes to overcome signal overlaps and to collect distance restraints. Excessive spectra crowding hampered large MP structure determination by ssNMR, and so far only high resolution structure of small or fragments of MP have been determined. However, ssNMR provides the unique opportunity to obtain atomic level information of MP in phospholipid bilayers such as orientation of the protein in the membrane. Specific and careful sample preparations are required in combination with uniformly and partially labelled protein for ssNMR spectra assignment. Distance restraints measurements benefit from methodologies currently developed for small soluble proteins in micro-crystalline state.

Recent advances in the field increased the releasing rate of high resolution MP structures, providing unprecedented structural and dynamics information making NMR a powerful tool for structural and functional membrane protein studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vold RR, Prosser RS (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J Magn Res B 113:267–271

    Article  CAS  Google Scholar 

  2. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  PubMed  CAS  Google Scholar 

  3. Page RC, Li C, Hu J, Gao FP, Cross TA (2007) Lipid bilayers: an essential environment for the understanding of membrane proteins. Magn Reson Chem 45:S2–S11

    Article  CAS  Google Scholar 

  4. De Angelis AA, Jones DH, Grant CV, Park SH, Mesleh MF, Opella SJ (2005) NMR experiments on aligned samples of membrane proteins. Methods Enzymol 394:350–382

    Article  PubMed  Google Scholar 

  5. Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X (2004) Membrane protein structure determination using solid-state NMR Methods. Mol Biol 278:403–473

    CAS  Google Scholar 

  6. Nielsen N, Malmendal A, Vosegaard T (2004) Techniques and applications of NMR to membrane proteins. Mol Membr Biol 21:129–141

    Article  PubMed  CAS  Google Scholar 

  7. Gordon E, Horsefield R, Swarts HG, de Pont JJ, Neutze R, Snijder A (2008) Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expr Purif 62:1–8

    Article  PubMed  CAS  Google Scholar 

  8. Tyler RC, Sreenath HK, Singh S, Aceti DJ, Bingman CA, Markley JL, Fox BG (2005) Auto-induction medium for the production of [U-15N]- and [U-13C, U-15N]-labeled proteins for NMR screening and structure determination. Protein Expr Purif 40:268–278

    Article  PubMed  CAS  Google Scholar 

  9. Koglin A, Klammt C, Trbovic N, Schwarz D, Schneider B, Schafer B, Lohr F, Bernhard F, Dotsch V (2006) Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins. Magn Reson Chem 44:S17–S23

    Article  PubMed  CAS  Google Scholar 

  10. Reckel S, Sobhanifar S, Schneider B, Junge F, Schwarz D, Durst F, Lohr F, Guntert P, Bernhard F, Dotsch V (2008) Transmembrane segment enhanced labeling as a tool for the back bone assignment of alpha-helical membrane proteins. Proc Natl Acad Sci U S A 105:8262–8267

    Article  PubMed  CAS  Google Scholar 

  11. Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28:43–57

    Article  PubMed  CAS  Google Scholar 

  12. Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, Mobley CK, Sanders CR, Ma L, Sonnichsen FD, Lee S, Howell SC, Opella SJ, Cross TA (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Funct Genomics 7:51–64

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Q, Horst R, Geralt M, Ma X, Hong WX, Finn MG, Stevens RC, Wuthrich K (2008) Microscale NMR screening of new detergents for membrane protein structural biology. J Am Chem Soc 130:7357–7363

    Article  PubMed  CAS  Google Scholar 

  14. Sanders CR, Sonnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  PubMed  CAS  Google Scholar 

  15. Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768:3098–3106

    Article  PubMed  CAS  Google Scholar 

  16. Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266

    Article  PubMed  CAS  Google Scholar 

  17. Shih SC, Stoica I, Goto NK (2008) Investigation of the utility of selective methyl protonation for determination of membrane protein structures. J Biomol NMR 42:49–58

    Article  PubMed  CAS  Google Scholar 

  18. Zhou Y, Cierpicki T, Flores Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908

    Article  PubMed  CAS  Google Scholar 

  19. Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:1317–1321

    Article  PubMed  CAS  Google Scholar 

  20. Cierpicki T, Liang B, Tamm LK, Bushweller JH (2006) Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein. A J Am Chem Soc 128:6947–6951

    Article  CAS  Google Scholar 

  21. Fernandez C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  PubMed  CAS  Google Scholar 

  22. Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R (2007) Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14:1089–1095

    Article  PubMed  CAS  Google Scholar 

  23. Tugarinov V, Muhandiram R, Ayed A, Kay LE (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g. J Am Chem Soc 124:10025–10035

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez C, Hilty C, Wider G, Guntert P, Wuthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336:1211–1221

    Article  PubMed  CAS  Google Scholar 

  25. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci U S A 102:10870–10875

    Article  PubMed  CAS  Google Scholar 

  26. Hilty C, Wider G, Fernandez C, Wuthrich K (2004) Membrane protein–lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Chembiochem 5:467–473

    Article  PubMed  CAS  Google Scholar 

  27. Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR (2008) Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry 47:9428–9446

    Article  PubMed  CAS  Google Scholar 

  28. Mascioni A, Eggimann BL, Veglia G (2004) Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban. Chem Phys Lipids 132:133–144

    Article  PubMed  CAS  Google Scholar 

  29. Cierpicki T, Bushweller JH (2004) Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J Am Chem Soc 126:16259–16266

    Article  PubMed  CAS  Google Scholar 

  30. Kamen DE, Cahill SM, Girvin ME (2007) Multiple alignment of membrane proteins for measuring residual dipolar couplings using lanthanide ions bound to a small metal chelator. J Am Chem Soc 129:1846–1847

    Article  PubMed  CAS  Google Scholar 

  31. Bermel W, Bertini I, Felli IC, Lee YM, Luchinat C, Pierattelli R (2006) Protonless NMR experiments for sequence-specific assignment of back bone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Q, Atreya HS, Kamen DE, Girvin ME, Szyperski T (2008) GFT projection NMR based resonance assignment of membrane proteins: application to subunit C of E. coli F(1)F(0) ATP synthase in LPPG micelles. J Biomol NMR 40:157–163

    Article  PubMed  CAS  Google Scholar 

  33. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99:13560–13565

    Article  PubMed  CAS  Google Scholar 

  34. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 101:9618–9623

    Article  PubMed  CAS  Google Scholar 

  35. Hwang PM, Kay LE (2005) Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP. Methods Enzymol 394:335–350

    Article  PubMed  CAS  Google Scholar 

  36. Li C, Gao P, Qin H, Chase R, Gor’kov PL, Brey WW, Cross TA (2007) Uniformly aligned full-length membrane proteins in liquid crystalline bilayers for structural characterization. J Am Chem Soc 129:5304–5305

    Article  PubMed  CAS  Google Scholar 

  37. De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2:2332–2338

    Article  PubMed  Google Scholar 

  38. Park SH, Loudet C, Marassi FM, Dufourc EJ, Opella SJ (2008) Solid-state NMR spectroscopy of a membrane protein in biphenyl phospholipid bicelles with the bilayer normal parallel to the magnetic field. J Magn Reson 193:133–138

    Article  PubMed  CAS  Google Scholar 

  39. Mahalakshmi R, Marassi FM (2008) Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-state NMR. Biochemistry 47:6531–6538

    Article  PubMed  CAS  Google Scholar 

  40. Marassi FM, Opella SJ (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 12:403–411

    Article  PubMed  CAS  Google Scholar 

  41. De Angelis AA, Howell SC, Nevzorov AA, Opella SJ (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267

    Article  PubMed  Google Scholar 

  42. Achuthan S, Asbury T, Hu J, Bertram R, Cross TA, Quine JR (2008) Continuity conditions and torsion angles from ssNMR orientational restraints. J Magn Reson 191:24–30

    Article  PubMed  CAS  Google Scholar 

  43. Sinha N, Grant CV, Park SH, Brown JM, Opella SJ (2007) Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins. J Magn Reson 186:51–64

    Article  PubMed  CAS  Google Scholar 

  44. Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Protein Sci 17:199–204

    Article  PubMed  Google Scholar 

  45. Huang L, McDermott AE (2008) Partial site-specific assignment of a uniformly (13)C, (15)N enriched membrane protein, light-harvesting complex 1 (LH1), by solid state NMR. Biochim Biophys Acta 1777:1098–1108

    Article  PubMed  CAS  Google Scholar 

  46. Lorch M, Fahem S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C (2005) How to prepare membrane proteins for solid-state NMR: a case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem 6:1693–1700

    Article  PubMed  CAS  Google Scholar 

  47. Pauli J, van Rossum B, Forster H, de Groot HJ, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    Article  PubMed  CAS  Google Scholar 

  48. Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J Am Chem Soc 130:3959–3966

    Article  PubMed  CAS  Google Scholar 

  49. Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Back bone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. Chembiochem 2:272–281

    Article  PubMed  CAS  Google Scholar 

  50. http://www.drorlist.com/nmr/SPNMR.html

  51. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  PubMed  CAS  Google Scholar 

  52. Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 44:2089–2092

    Article  PubMed  CAS  Google Scholar 

  53. Malia TJ, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46:514–525

    Article  PubMed  CAS  Google Scholar 

  54. Assadi-Porter FM, Tonelli M, Maillet E, Hallenga K, Benard O, Max M, Markley JL (2008) Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J Am Chem Soc 130:7212–7213

    Article  PubMed  CAS  Google Scholar 

  55. Etzkorn M, Kneuper H, Dunnwald P, Vijayan V, Kramer J, Griesinger C, Becker S, Unden G, Baldus M (2008) Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat Struct Mol Biol 15:1031–1039

    Article  PubMed  CAS  Google Scholar 

  56. Ader C, Schneider R, Hornig S, Velisetty P, Wilson EM, Lange A, Giller K, Ohmert I, Martin-Eauclaire MF, Trauner D, Becker S, Pongs O, Baldus M (2008) A structural link between inactivation and block of a K+ channel. Nat Struct Mol Biol 15:605–612

    Article  PubMed  CAS  Google Scholar 

  57. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  PubMed  CAS  Google Scholar 

  58. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462

    Article  PubMed  CAS  Google Scholar 

  59. Seidel K, Andronesi OC, Krebs J, Griesinger C, Young HS, Becker S, Baldus M (2008) Structural characterization of Ca(2+)-ATPase-bound phospholamban in lipid bilayers by solid-state nuclear magnetic resonance (NMR) spectroscopy. Biochemistry 47:4369–4376

    Article  PubMed  CAS  Google Scholar 

  60. Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 104:14676–14681

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadège Jamin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Montaville, P., Jamin, N. (2010). Determination of Membrane Protein Structures Using Solution and Solid-State NMR. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics