Skip to main content

Chemoreceptors, Breathing, and Sleep

  • Chapter
  • First Online:
Sleep Disordered Breathing in Children

Abstract

Oxygen (O2) and carbon dioxide (CO2) chemoreception is highly relevant to multiple areas of sleep medicine. Patients with sleep-disordered breathing (SDB) may experience hypoxia during sleep, often nightly in an episodic pattern called “chronic intermittent hypoxia” (CIH), which in turn may lead to major cardiovascular complications. Some patients with SDB hypoventilate during sleep and develop hypercapnia. Hypoxemia and hypercapnia mediate, in part, arousal responses to abnormal breathing during sleep. In this chapter, we review the role of O2 and CO2 chemoreceptors in breathing control, the basic physiology of O2 and CO2 sensing, and the role of chemoreceptors in sleep-related breathing disorders, all in a developmental context. This chapter also discusses a variety of disorders associated with sleep problems, from congenital central hypoventilation syndrome (CCHS) to Prader–Willi syndrome (PWS), which are associated with abnormal chemoreceptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McArdle WD, Katch FI, Katch VL. Measuring and evaluating human energy-generating capacities during exercise. In: Essentials of exercise physiology. 3 rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2006. p. 223–59.

    Google Scholar 

  2. Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol. 2010;30(4):648–52.

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.

    Article  CAS  Google Scholar 

  4. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042–55.

    Article  PubMed  CAS  Google Scholar 

  5. Neubauer JA, Sunderram J. Oxygen-sensing neurons in the central nervous system. J Appl Physiol. 2004;96(1):367–74.

    Article  PubMed  CAS  Google Scholar 

  6. Powell FL, Kim BC, Johnson SR, Fu Z. Oxygen sensing in the brain—invited article. Adv Exp Med Biol. 2009;648:369–76.

    Article  PubMed  CAS  Google Scholar 

  7. Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol. 2010;588(Pt 13):2455–71.

    Article  PubMed  CAS  Google Scholar 

  8. Smith CA, Forster HV, Blain GM, Dempsey JA. An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol. 2010;173(3):288–97.

    Article  PubMed  Google Scholar 

  9. Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol. 2009;106(5):1564–73.

    Article  PubMed  Google Scholar 

  10. Dauger S, Pattyn A, Lofaso F, et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development. 2003; 130(26):6635–42.

    Article  PubMed  CAS  Google Scholar 

  11. Carroll JL, Donnelly DF. Postnatal development of carotid chemoreceptor function. In: Marcus CL, Carroll JL, Donnelly DF, Loughlin GM, editors. Sleep and breathing in children: developmental changes in breathing during sleep. New York: Informa Healthcare; 2008. p. 47–82.

    Google Scholar 

  12. Donnelly DF, Bavis RW, Kim I, Dbouk HA, Carroll JL. Time course of alterations in pre- and post-­synaptic chemoreceptor function during developmental hyperoxia. Respir Physiol Neurobiol. 2009;168(3): 189–97.

    Article  PubMed  CAS  Google Scholar 

  13. Sterni LM, Bamford OS, Wasicko MJ, Carroll JL. Chronic hypoxia abolished the postnatal increase in carotid body type I cell sensitivity to hypoxia. Am J Physiol. 1999;277(3 Pt 1):L645–52.

    PubMed  CAS  Google Scholar 

  14. Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol. 2003;94(1):375–89.

    Article  PubMed  CAS  Google Scholar 

  15. Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol. 2010;108(4):989–94.

    Article  PubMed  CAS  Google Scholar 

  16. Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol. 2010; 108(5):1417–24.

    Article  PubMed  CAS  Google Scholar 

  17. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–66.

    Article  PubMed  CAS  Google Scholar 

  18. Bianchi AL, Gestreau C. The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol. 2009;168(1–2):4–12.

    Article  PubMed  Google Scholar 

  19. Carroll JL, Agarwal A. Development of ventilatory control in infants. Paediatr Respir Rev. 2010;11(4): 199–207. doi:10.1016/j.prrv.2010.06.002. Ref Type: Generic.

    Article  PubMed  Google Scholar 

  20. Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol. 2010;173(3):244–55.

    Article  PubMed  CAS  Google Scholar 

  21. Gauda EB, Carroll JL, Donnelly DF. Developmental maturation of chemosensitivity to hypoxia of peripheral arterial chemoreceptors—invited article. Adv Exp Med Biol. 2009;648:243–55.

    Article  PubMed  CAS  Google Scholar 

  22. Gauda EB, Cristofalo E, Nunez J. Peripheral arterial chemoreceptors and sudden infant death syndrome. Respir Physiol Neurobiol. 2007;157(1):162–70.

    Article  PubMed  CAS  Google Scholar 

  23. Bavis RW, Mitchell GS. Long-term effects of the perinatal environment on respiratory control. J Appl Physiol. 2008;104(4):1220–9.

    Article  PubMed  Google Scholar 

  24. Dumont FS, Kinkead R. Neonatal stress and attenuation of the hypercapnic ventilatory response in adult male rats: the role of carotid chemo and baroreceptors. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1279–89.

    Article  PubMed  CAS  Google Scholar 

  25. Kinkead R, Gulemetova R, Bairam A. Neonatal maternal separation enhances phrenic responses to hypoxia and carotid sinus nerve stimulation in the adult anesthetized rat. J Appl Physiol. 2005;99(1):189–96.

    Article  PubMed  Google Scholar 

  26. Berthon-Jones M, Sullivan CE. Ventilation and arousal responses to hypercapnia in normal sleeping humans. J Appl Physiol. 1984;57(1):59–67.

    PubMed  CAS  Google Scholar 

  27. Rist KE, Daubenspeck JA, McGovern JF. Effects of non-REM sleep upon respiratory drive and the respiratory pump in humans. Respir Physiol. 1986;63(2): 241–56.

    Article  PubMed  CAS  Google Scholar 

  28. Bowes G, Townsend ER, Kozar LF, Bromley SM, Phillipson EA. Effect of carotid body denervation on arousal response to hypoxia in sleeping dogs. J Appl Physiol. 1981;51(1):40–5.

    PubMed  CAS  Google Scholar 

  29. Lovering AT, Dunin-Barkowski WL, Vidruk EH, Orem JM. Ventilatory response of the cat to hypoxia in sleep and wakefulness. J Appl Physiol. 2003;95(2):545–54.

    PubMed  Google Scholar 

  30. Berthon-Jones M, Sullivan CE. Ventilatory and arousal responses to hypoxia in sleeping humans. Am Rev Respir Dis. 1982;125(6):632–9.

    PubMed  CAS  Google Scholar 

  31. Hedemark LL, Kronenberg RS. Ventilatory and heart rate responses to hypoxia and hypercapnia during sleep in adults. J Appl Physiol. 1982;53(2):307–12.

    PubMed  CAS  Google Scholar 

  32. Smith CA, Chenuel BJ, Henderson KS, Dempsey JA. The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors. J Appl Physiol. 2007;103(2):578–86.

    Article  PubMed  CAS  Google Scholar 

  33. Davidson TL, Fewell JE. Arousal response from sleep to tracheal obstruction in lambs during postnatal maturation. Pediatr Res. 1994;36(4):501–5.

    Article  PubMed  CAS  Google Scholar 

  34. Baker SB, Fewell JE. Effects of hyperoxia on the arousal response to upper airway obstruction in lambs. Pediatr Res. 1987;21(2):116–20.

    Article  PubMed  CAS  Google Scholar 

  35. Fewell JE, Taylor BJ, Kondo CS, Dascalu V, Filyk SC. Influence of carotid denervation on the arousal and cardiopulmonary responses to upper airway obstruction in lambs. Pediatr Res. 1990;28(4):374–8.

    Article  PubMed  CAS  Google Scholar 

  36. Fewell JE, Kondo CS, Dascalu V, Filyk SC. Influence of carotid denervation on the arousal and cardiopulmonary response to rapidly developing hypoxemia in lambs. Pediatr Res. 1989;25(5):473–7.

    Article  PubMed  CAS  Google Scholar 

  37. Ward SL, Bautista DB, Keens TG. Hypoxic arousal responses in normal infants. Pediatrics. 1992;89(5 Pt 1):860–4.

    PubMed  CAS  Google Scholar 

  38. Milerad J, Hertzberg T, Wennergren G, Lagercrantz H. Respiratory and arousal responses to hypoxia in apnoeic infants reinvestigated. Eur J Pediatr. 1989; 148(6):565–70.

    Article  PubMed  CAS  Google Scholar 

  39. van der Hal AL, Rodriguez AM, Sargent CW, Platzker AC, Keens TG. Hypoxic and hypercapneic arousal responses and prediction of subsequent apnea in apnea of infancy. Pediatrics. 1985;75(5): 848–54.

    PubMed  Google Scholar 

  40. Ariagno R, Nagel L, Guilleminault C. Waking and ventilatory responses during sleep in infants near-miss for sudden infant death syndrome. Sleep. 1980;3(3–4):351–9.

    PubMed  CAS  Google Scholar 

  41. Hunt CE. Abnormal hypercarbic and hypoxic sleep arousal responses in near-miss SIDS infants. Pediatr Res. 1981;15(11):1462–4.

    Article  PubMed  CAS  Google Scholar 

  42. Parslow PM, Harding R, Adamson TM, Horne RS. Of sleep state and postnatal age on arousal responses induced by mild hypoxia in infants. Sleep. 2004;27(1):105–9.

    PubMed  Google Scholar 

  43. Fewell JE, Kondo CS, Dascalu V, Filyk SC. Influence of carotid-denervation on the arousal and cardiopulmonary responses to alveolar hypercapnia in lambs. J Dev Physiol. 1989;12(4):193–9.

    PubMed  CAS  Google Scholar 

  44. Bowes G. Arousal responses to chemical stimuli during sleep. J Dev Physiol. 1984;6(3):207–13.

    PubMed  CAS  Google Scholar 

  45. Fewell JE, Konduri GG. Influence of repeated exposure to rapidly developing hypoxaemia on the arousal and cardiopulmonary response to rapidly developing hypoxaemia in lambs. J Dev Physiol. 1989;11(2): 77–82.

    PubMed  CAS  Google Scholar 

  46. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254(5032):726–9.

    Article  PubMed  CAS  Google Scholar 

  47. McLean HA, Remmers JE. Respiratory motor output of the sectioned medulla of the neonatal rat. Respir Physiol. 1994;96(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  48. Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, Depuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol. 2009;168(1–2):59–68.

    Article  PubMed  Google Scholar 

  49. Guyenet PG, Bayliss DA, Mulkey DK, Stornetta RL, Moreira TS, Takakura AT. The retrotrapezoid nucleus and central chemoreception. Adv Exp Med Biol. 2008;605:327–32.

    Article  PubMed  CAS  Google Scholar 

  50. Dubreuil V, Thoby-Brisson M, Rallu M, et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci. 2009;29(47):14836–46.

    Article  PubMed  CAS  Google Scholar 

  51. Dubreuil V, Ramanantsoa N, Trochet D, et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA. 2008;105(3):1067–72.

    Article  PubMed  CAS  Google Scholar 

  52. Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol. 2009;106(4):1464–6.

    Article  PubMed  CAS  Google Scholar 

  53. Nattie E, Li A. Central chemoreception 2005: a brief review. Auton Neurosci. 2006;126–127:332–8.

    Article  PubMed  CAS  Google Scholar 

  54. Joseph V, Pequignot JM, Van RO. Neurochemical perspectives on the control of breathing during sleep. Respir Physiol Neurobiol. 2002;130(3):253–63.

    Article  PubMed  CAS  Google Scholar 

  55. Gervasoni D, Peyron C, Rampon C, et al. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci. 2000;20(11): 4217–25.

    PubMed  CAS  Google Scholar 

  56. Li A, Randall M, Nattie EE. CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. J Appl Physiol. 1999;87(3):910–9.

    PubMed  CAS  Google Scholar 

  57. Nattie EE, Li A. CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol. 2001;90(4):1247–57.

    PubMed  CAS  Google Scholar 

  58. Nattie EE, Li A. CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol. 2002;92(5):2119–30.

    PubMed  Google Scholar 

  59. Manning HL, Leiter JC. Respiratory control and respiratory sensation in a patient with a ganglioglioma within the dorsocaudal brain stem. Am J Respir Crit Care Med. 2000;161(6):2100–6.

    PubMed  CAS  Google Scholar 

  60. Li A, Nattie E. Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol. 2006;570(Pt 2): 385–96.

    PubMed  CAS  Google Scholar 

  61. Hodges MR, Tattersall GJ, Harris MB, et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci. 2008;28(10):2495–505.

    Article  PubMed  CAS  Google Scholar 

  62. Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol. 2010;173(3):223–9.

    Article  PubMed  CAS  Google Scholar 

  63. Li A, Nattie EE. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol. 2010;588:2935–44.

    Article  PubMed  CAS  Google Scholar 

  64. Dean JB, Nattie EE. Central CO2 chemoreception in cardio-respiratory control. J Appl Physiol. 2010;108(4):976–8.

    Article  PubMed  Google Scholar 

  65. Younes M. Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol. 2008;105(5):1389–405.

    Article  PubMed  CAS  Google Scholar 

  66. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5):623–33.

    Article  PubMed  Google Scholar 

  67. Eckert DJ, Malhotra A, Jordan AS. Mechanisms of apnea. Prog Cardiovasc Dis. 2009;51(4):313–23.

    Article  PubMed  Google Scholar 

  68. Kimoff RJ, Cheong TH, Olha AE, et al. Mechanisms of apnea termination in obstructive sleep apnea. Role of chemoreceptor and mechanoreceptor stimuli. Am J Respir Crit Care Med. 1994;149(3 Pt 1):707–14.

    PubMed  CAS  Google Scholar 

  69. Gleeson K, Zwillich CW, White DP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis. 1990;142(2):295–300.

    PubMed  CAS  Google Scholar 

  70. Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep. 1997; 20(8):654–75.

    PubMed  CAS  Google Scholar 

  71. Younes M, Ostrowski M, Atkar R, Laprairie J, Siemens A, Hanly P. Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol. 2007;103(6):1929–41.

    Article  PubMed  Google Scholar 

  72. Younes M. Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med. 2003;168(6): 645–58.

    Article  PubMed  Google Scholar 

  73. Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2001;163(5):1181–90.

    PubMed  CAS  Google Scholar 

  74. Kara T, Narkiewicz K, Somers VK. Chemoreflexes—physiology and clinical implications. Acta Physiol Scand. 2003;177(3):377–84.

    Article  PubMed  CAS  Google Scholar 

  75. McNamara F, Issa FG, Sullivan CE. Arousal pattern following central and obstructive breathing abnormalities in infants and children. J Appl Physiol. 1996;81(6):2651–7.

    PubMed  CAS  Google Scholar 

  76. Marcus CL, Gozal D, Arens R, et al. Ventilatory responses during wakefulness in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1994;149(3 Pt 1):715–21.

    PubMed  CAS  Google Scholar 

  77. Gozal D, Arens R, Omlin KJ, Marcus CL, Keens TG. Maturational differences in step vs. ramp hypoxic and hypercapnic ventilatory responses. J Appl Physiol. 1994;76(5):1968–75.

    PubMed  CAS  Google Scholar 

  78. Marcus CL, Glomb WB, Basinski DJ, Davidson SL, Keens TG. Developmental pattern of hypercapnic and hypoxic ventilatory responses from childhood to adulthood. J Appl Physiol. 1994;76(1):314–20.

    PubMed  CAS  Google Scholar 

  79. Kato M, Adachi T, Koshino Y, Somers VK. Obstructive sleep apnea and cardiovascular disease. Circ J. 2009;73(8):1363–70.

    Article  PubMed  Google Scholar 

  80. Fletcher EC. Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep. 2003;26(1):15–9.

    PubMed  Google Scholar 

  81. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.

    Article  PubMed  CAS  Google Scholar 

  82. Prabhakar NR, Peng YJ, Kumar GK, Pawar A. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007;157(1):148–53.

    Article  PubMed  CAS  Google Scholar 

  83. Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010;174:156–61.

    Article  PubMed  Google Scholar 

  84. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.

    Article  PubMed  CAS  Google Scholar 

  85. Serratto M, Harris VJ, Carr I. Upper airways obstruction. Presentation with systemic hypertension. Arch Dis Child. 1981;56(2):153–5.

    Article  PubMed  CAS  Google Scholar 

  86. Kwok KL, Ng DK, Chan CH. Cardiovascular changes in children with snoring and obstructive sleep apnoea. Ann Acad Med Singapore. 2008;37(8):715–21.

    PubMed  Google Scholar 

  87. Kwok KL, Ng DK, Cheung YF. BP and arterial distensibility in children with primary snoring. Chest. 2003;123(5):1561–6.

    Article  PubMed  Google Scholar 

  88. Amin RS, Kimball TR, Kalra M, et al. Left ventricular function in children with sleep-disordered breathing. Am J Cardiol. 2005;95(6):801–4.

    Article  PubMed  Google Scholar 

  89. Amin RS, Carroll JL, Jeffries JL, et al. Twenty-four-hour ambulatory blood pressure in children with sleep-disordered breathing. Am J Respir Crit Care Med. 2004;169(8):950–6.

    Article  PubMed  Google Scholar 

  90. Amin RS, Kimball TR, Bean JA, et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescents with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;165(10): 1395–9.

    Article  PubMed  Google Scholar 

  91. Liao D, Li X, Rodriguez-Colon SM, et al. Sleep-disordered breathing and cardiac autonomic modulation in children. Sleep Med. 2010;11(5):484–8.

    Article  PubMed  Google Scholar 

  92. Liao D, Li X, Vgontzas AN, et al. Sleep-disordered breathing in children is associated with impairment of sleep stage-specific shift of cardiac autonomic modulation. J Sleep Res. 2010;19(2):358–65.

    Article  PubMed  CAS  Google Scholar 

  93. Cheng L, Ivanova O, Fan HH, Khoo MC. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir Physiol Neurobiol. 2010;174:4–28.

    Article  PubMed  Google Scholar 

  94. Chaicharn J, Lin Z, Chen ML, Ward SL, Keens T, Khoo MC. Model-based assessment of cardiovascular autonomic control in children with obstructive sleep apnea. Sleep. 2009;32(7):927–38.

    PubMed  Google Scholar 

  95. Baharav A, Kotagal S, Rubin BK, Pratt J, Akselrod S. Autonomic cardiovascular control in children with obstructive sleep apnea. Clin Auton Res. 1999;9(6):345–51.

    Article  PubMed  CAS  Google Scholar 

  96. O’Brien LM, Gozal D. Autonomic dysfunction in children with sleep-disordered breathing. Sleep. 2005;28(6):747–52.

    PubMed  Google Scholar 

  97. Pawar A, Peng YJ, Jacono FJ, Prabhakar NR. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol. 2008;104(5):1287–94.

    Article  PubMed  Google Scholar 

  98. Soukhova-O’Hare GK, Roberts AM, Gozal D. Impaired control of renal sympathetic nerve activity following neonatal intermittent hypoxia in rats. Neurosci Lett. 2006;399(3):181–5.

    Article  PubMed  CAS  Google Scholar 

  99. Reeves SR, Gozal D. Developmental plasticity of respiratory control following intermittent hypoxia. Respir Physiol Neurobiol. 2005;149(1–3):301–11.

    Article  PubMed  Google Scholar 

  100. Amiel J, Dubreuil V, Ramanantsoa N, et al. PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol. 2009;168(1–2):125–32.

    Article  PubMed  CAS  Google Scholar 

  101. Cutz E, Ma TK, Perrin DG, Moore AM, Becker LE. Peripheral chemoreceptors in congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 1997;155(1):358–63.

    PubMed  CAS  Google Scholar 

  102. Gozal D, Marcus CL, Shoseyov D, Keens TG. Peripheral chemoreceptor function in children with the congenital central hypoventilation syndrome. J Appl Physiol. 1993;74(1):379–87.

    PubMed  CAS  Google Scholar 

  103. Paton JY, Swaminathan S, Sargent CW, Keens TG. Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am Rev Respir Dis. 1989;140(2):368–72.

    Article  PubMed  CAS  Google Scholar 

  104. Oren J, Newth CJ, Hunt CE, Brouillette RT, Bachand RT, Shannon DC. Ventilatory effects of almitrine bismesylate in congenital central hypoventilation syndrome. Am Rev Respir Dis. 1986;134(5):917–9.

    PubMed  CAS  Google Scholar 

  105. Hunt CE, Inwood RJ, Shannon DC. Respiratory and nonrespiratory effects of doxapram in congenital central hypoventilation syndrome. Am Rev Respir Dis. 1979;119(2):263–9.

    PubMed  CAS  Google Scholar 

  106. Ward SL, Jacobs RA, Gates EP, Hart LD, Keens TG. Abnormal ventilatory patterns during sleep in infants with myelomeningocele. J Pediatr. 1986;109(4): 631–4.

    Article  PubMed  CAS  Google Scholar 

  107. Ward SL, Nickerson BG, van der Hal A, Rodriguez AM, Jacobs RA, Keens TG. Absent hypoxic and hypercapneic arousal responses in children with myelomeningocele and apnea. Pediatrics. 1986; 78(1):44–50.

    PubMed  CAS  Google Scholar 

  108. Swaminathan S, Paton JY, Ward SL, Jacobs RA, Sargent CW, Keens TG. Abnormal control of ventilation in adolescents with myelodysplasia. J Pediatr. 1989;115(6):898–903.

    Article  PubMed  CAS  Google Scholar 

  109. Gozal D, Arens R, Omlin KJ, Jacobs RA, Keens TG. Peripheral chemoreceptor function in children with myelomeningocele and Arnold-Chiari malformation type 2. Chest. 1995;108(2):425–31.

    Article  PubMed  CAS  Google Scholar 

  110. Arens R, Gozal D, Omlin KJ, et al. Hypoxic and hypercapnic ventilatory responses in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2224–30.

    PubMed  CAS  Google Scholar 

  111. Arens R, Gozal D, Burrell BC, et al. Arousal and cardiorespiratory responses to hypoxia in Prader-Willi syndrome. Am J Respir Crit Care Med. 1996;153(1):283–7.

    PubMed  CAS  Google Scholar 

  112. Gozal D, Arens R, Omlin KJ, Ward SL, Keens TG. Absent peripheral chemosensitivity in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2231–6.

    PubMed  CAS  Google Scholar 

  113. Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am J Pathol. 2005; 167(1):175–91.

    Article  PubMed  CAS  Google Scholar 

  114. Zanella S, Tauber M, Muscatelli F. Breathing deficits of the Prader-Willi syndrome. Respir Physiol Neurobiol. 2009;168(1–2):119–24.

    Article  PubMed  Google Scholar 

  115. Delacourt C, Canet E, Bureau MA. Predominant role of peripheral chemoreceptors in the termination of apnea in maturing newborn lambs. J Appl Physiol. 1996;80(3):892–8.

    PubMed  CAS  Google Scholar 

  116. Al-Matary A, Kutbi I, Qurashi M, et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol. 2004;28(4):264–72.

    Article  PubMed  Google Scholar 

  117. Gauda EB, McLemore GL, Tolosa J, Marston-Nelson J, Kwak D. Maturation of peripheral arterial chemoreceptors in relation to neonatal apnoea. Semin Neonatol. 2004;9(3):181–94.

    Article  PubMed  Google Scholar 

  118. Garg M, Kurzner SI, Bautista D, Keens TG. Hypoxic arousal responses in infants with bronchopulmonary dysplasia. Pediatrics. 1988;82(1):59–63.

    PubMed  CAS  Google Scholar 

  119. Thach BT. Some aspects of clinical relevance in the maturation of respiratory control in infants. J Appl Physiol. 2008;104(6):1828–34.

    Article  PubMed  Google Scholar 

  120. Thach BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol. 2005;149(1–3): 343–53.

    Article  PubMed  Google Scholar 

  121. Darnall RA. The role of CO(2) and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173(3): 201–12.

    Article  PubMed  Google Scholar 

  122. Fewell JE. Protective responses of the newborn to hypoxia. Respir Physiol Neurobiol. 2005;149: 243–55.

    Article  PubMed  CAS  Google Scholar 

  123. Stephan-Blanchard E, Telliez F, Leke A, et al. The influence of in utero exposure to smoking on sleep patterns in preterm neonates. Sleep. 2008;31(12): 1683–9.

    PubMed  Google Scholar 

  124. Stephan-Blanchard E, Chardon K, Leke A, et al. In utero exposure to smoking and peripheral chemoreceptor function in preterm neonates. Pediatrics. 2010;125(3):e592–9.

    Article  PubMed  Google Scholar 

  125. Sawnani H, Jackson T, Murphy T, Beckerman R, Simakajornboon N. The effect of maternal smoking on respiratory and arousal patterns in preterm infants during sleep. Am J Respir Crit Care Med. 2004; 169(6):733–8.

    Article  PubMed  Google Scholar 

  126. Richardson HL, Walker AM, Horne RS. Maternal smoking impairs arousal patterns in sleeping infants. Sleep. 2009;32(4):515–21.

    PubMed  Google Scholar 

  127. Campos M, Bravo E, Eugenin J. Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol. 2009;36(12):1205–17.

    Article  PubMed  CAS  Google Scholar 

  128. Hafstrom O, Milerad J, Sundell HW. Prenatal nicotine exposure blunts the cardiorespiratory response to hypoxia in lambs. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1544–9.

    Article  PubMed  Google Scholar 

  129. Hafstrom O, Milerad J, Asokan N, Poole SD, Sundell HW. Nicotine delays arousal during hypoxemia in lambs. Pediatr Res. 2000;47(5):646–52.

    Article  PubMed  CAS  Google Scholar 

  130. Fleming P, Blair PS. Sudden infant death syndrome and parental smoking. Early Hum Dev. 2007;83(11): 721–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Carroll MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carroll, J.L., Jambhekar, S.K., Donnelly, D.F. (2012). Chemoreceptors, Breathing, and Sleep. In: Kheirandish-Gozal, L., Gozal, D. (eds) Sleep Disordered Breathing in Children. Respiratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-725-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-725-9_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-724-2

  • Online ISBN: 978-1-60761-725-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics