Skip to main content

Application of Free Flow Electrophoresis to the Analysis of the Urine Proteome

  • Protocol
  • First Online:
The Urinary Proteome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 641))

Abstract

Urine is a complex fluid, which is thought to contain valuable diagnostic information regarding general health. In particular, there is great diagnostic potential in the peptide and/or protein content of urine, but the information is present in low abundance. Most traditional proteomic techniques lack sufficient sensitivity/dynamic range, especially for dilute and/or complex samples. However, orthogonal separation methods can be applied prior to protein/peptide analysis to increase the success rate of urine proteomic studies and access this potentially valuable information. In this chapter, we describe isoelectric focusing (IEF) of intact urine proteins, via free flow electrophoresis (FFE), prior to typical peptide-based mass spectrometry analysis, facilitating the deep analysis of urine protein detection and identification, for biomarker discovery. Our work demonstrates that such an approach can be used as a preprocessing step and can be integrated into a workflow for the successful identification of protein components (biomarkers) from urine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen, E., Gburek, J. (2004). Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology. Pediatric Nephrology 19: 714–721.

    Article  PubMed  Google Scholar 

  2. Brunzel, N. A. (2004). Fundamental of Urine and Body Fluid Analysis. Philadelphia, PA: Saunders.

    Google Scholar 

  3. Mataija-Botelho, D., Murphy, P., Pinto, D. M., MacLellan, D. L., Langlois, C., Doucette, A. A. (2009). A quantitative proteome investigation of the sediment portion of human urine: Implications in the biomarker discovery process. Proteomics – Clinical Applications 3: 95–105.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Li, F., Sun, W., Wu, S., Wang, X., Zhang, L., Zheng, D., Wang, J., Gao, Y. (2006). Concavalin A captured glycoproteins in healthy human urine. Molecular and Cellular Proteomics 5: 560–562.

    Article  CAS  PubMed  Google Scholar 

  5. Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J., Guerrier, L., Fortis, F., Boschetti, E., Lomas, L., Righetti, P. G. (2005). Exploring the hidden human urinary proteome via ligand library beads. Journal of Proteome Research 4: 1917–1930.

    Article  CAS  PubMed  Google Scholar 

  6. Moritz, R. L., Simpson, R. J. (2005). Liquid-based free flow electrophoresis-reversed phase HPLC: a proteomic tool. Nature Methods 2(11): 863–873.

    Article  CAS  PubMed  Google Scholar 

  7. Moritz, R. L., Ji, H., Schutz, F., Connolly, L. M., Kapp, E. A., Speed, T. P., Simpson, R. J. (2004). A proteome strategy to fractionate proteins and peptides using continuous free-flow electrophoresis coupled to off-line reversed phase high-performance liquid chromatography. Analytical Chemistry 76: 4811–4824

    Article  CAS  PubMed  Google Scholar 

  8. Xie, H., Rhodus, N. L., Griffin, R. J., Carlis, J. V., Griffin, T. J. (2005). Molecular and Cellular Proteomics 4(11): 1026–1030.

    Google Scholar 

  9. Cho, S. Y., Lee, J. S., Kim, H. Y., Park, J. M., Kwon, M. S., Park, Y. K., Lee, H. J., Kang, M. J., Kim, J. Y., Yoo, J. S., Cho, J. W., Kim, H. S., Paik, Y. K. (2005). Efficient prefractionation of low abundance proteins in human plasma and construction of a two-dimensional map. Proteomics 5: 3386–3396.

    Article  CAS  PubMed  Google Scholar 

  10. Adachi, A., Kumar, C., Zhang, Y., Olsen, J. V., Mann, M. (2006). The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biology 7: R80, 1–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Foucher, A.L., Craft, D.R., Gelfand, C.A. (2010). Application of Free Flow Electrophoresis to the Analysis of the Urine Proteome. In: Rai, A. (eds) The Urinary Proteome. Methods in Molecular Biology, vol 641. Humana Press. https://doi.org/10.1007/978-1-60761-711-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-711-2_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-710-5

  • Online ISBN: 978-1-60761-711-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics