Skip to main content

Primary Visual and Visuocognitive Deficits

  • Chapter
  • First Online:
Parkinson’s Disease and Nonmotor Dysfunction

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 2566 Accesses

Abstract

Visual abnormalities in individuals with Parkinson’s disease (PD) are unlikely to be uncovered during routine neurological examination. However, more sophisticated electrophysiological testing using techniques, such as the visual-evoked potential (VEP) and pattern electroretinogram (PERG), confirm the presence of visual system involvement in PD. Clinical observations, electrophysiological, and anatomical studies provide functional evidence that foveal vision is predominantly affected in PD. In vivo retinal imaging, using optical coherence tomography, reveals that the foveal retina is thinned in PD patients. In this chapter, we summarize the evidence of retinal impairment and its potential relevance to higher cognitive visual and visuomotor impairment.

Although the retina is the earliest, it is not the only site of visual pathology in PD. Foveal visual processing has a preferential role beyond the retina, beyond simple visual detection. Foveal signals are of crucial importance in visual categorization and, importantly, in visuospatial attention. More complex visuocognitive difficulties, e.g., impairment of consciously controlled visual information processing, have also been identified in PD. Some of these higher visual functions are affected in this disorder and one may ask if retinal foveal dysfunction contributes to visuospatial ­attention and other higher order visual impairment in PD. The exact relationship of foveal dopaminergic retinal deficits and visuocognitive impairment is not known in any detail; thus, the effect of foveal visual impairment on higher visual functions poses an exciting and challenging research question.

Visual event-related potentials (ERPs) in PD patients, obtained using foveal visual stimuli, demonstrate a delay in the P300 component, beyond a delay in the primary visual responses, and suggest slowness of visual information processing. Whereas some investigators have noted this abnormality only in demented patients with PD, others have indicated its presence in both demented and nondemented individuals. The visuospatial sketchpad, a component of the working memory system, shows a specific selective impairment in PD, and visual categorization deficits (suggesting involvement of the posterior part of the cortex) have also been found. Concurrent electrophysiological recordings of primary and visuocognitive responses reveal that the impairment of higher order visual processing in PD is not simply a consequence of retinal dopaminergic deficiency. Electrophysiological, neuropsychological, and functional neuroimaging data imply that both frontal and posterior cortico-subcortical circuits may be involved.

Foveal processing and visuospatial attention possibly may be linked through processes that involve saccadic eye movements. Saccadic eye movements are freely executed many thousand times a day by healthy observers. Part of their role is to “bring” eccentric targets to the direct sight line for closer scrutiny by foveal processing. This is called foveation: with functional imaging (fMRI), it was shown that the distributed centers of cortical control of saccades are disrupted in PD. It is even suggested that in the early stages of PD, patients have changes in visual input that impair their postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt LA, Sadun AA, Bassi CJ. Review of the visual system in Parkinson’s disease. Opt Vis Sci. 1995;72:92–9.

    CAS  Google Scholar 

  2. Dyer RS, Howell WE, MacPhail RC. Dopamine depletion slows retinal transmission. Exp Neurol. 1981;71:326–40.

    PubMed  CAS  Google Scholar 

  3. Bodis-Wollner I, Onofrj M. Systems diseases and VEP diagnosis in neurology: changes due to synaptic malfunction. In: Bodis-Wollner I, editor. Evoked potentials. Ann N Y Acad Sci. 1982;388:327–48.

    Google Scholar 

  4. Bodis-Wollner I, Tagliati M. The visual system in Parkinson’s disease. Adv Neurol. 1993;60:390–4.

    PubMed  CAS  Google Scholar 

  5. Masson G, Mestre D, Blin O. Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol. 1993;7:449–63.

    PubMed  CAS  Google Scholar 

  6. Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci. 1990;13:296–302.

    PubMed  CAS  Google Scholar 

  7. Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 2004;44:2793–7.

    PubMed  Google Scholar 

  8. Yavas GF, Yilmaz O, Küsbeci T, Oztürk F. The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol. 2007;17:812–6.

    PubMed  CAS  Google Scholar 

  9. Altintas O, Iseri P, Ozkan B, Caglar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthal. 2008;1116:137–46.

    Google Scholar 

  10. Hajee M, March W, Lazzaro D, Wolintz A, Shrier E, Glazman S, Bodis-Wollner I. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol. 2009;127:737–41.

    PubMed  Google Scholar 

  11. Wojtkowski M, Srinivasan V, Fujimoto J, et al. Three-dimensional retinal imaging with high speed ultrahigh resolution optical coherence tomography. Ophthalmology. 2005;112:1734–46.

    PubMed  Google Scholar 

  12. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–42.

    PubMed  CAS  Google Scholar 

  13. Rolls ET. Top-down control of visual perception: attention in natural vision. Perception. 2008;37:333–54.

    PubMed  Google Scholar 

  14. Bodis-Wollner I, Yahr MD. Measurements of visual evoked potentials in Parkinson’s disease. Brain. 1978;101:661–71.

    PubMed  CAS  Google Scholar 

  15. Ehle AL, Stewart RM, Lellelid NE, Leventhal NA. Normal checkboard pattern reversal evoked potentials in parkinsonism. Electroencephalogr Clin Neurophysiol. 1982;54:336–8.

    PubMed  CAS  Google Scholar 

  16. Regan D, Neima D. Visual fatigue and visual evoked potentials in multiple sclerosis, glaucoma, ocular hypertension and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1984;47:673–8.

    PubMed  CAS  Google Scholar 

  17. Bodis-Wollner I, Tzelepi A. The push-pull action of dopamine on spatial tuning of the monkey retina: the effects of dopaminergic deficiency and selective Dl and D2 receptor ligands on the pattern electroretinogram. Vision Res. 1998;38:1479–87.

    PubMed  CAS  Google Scholar 

  18. Bodis-Wollner I, Tzelepi A. Push-pull model of dopamine’s action in the retina. In: Hung GK, Ciuffreda KC, editors. Models of the visual system. New York: Kluwer; 2000. p. 191–214.

    Google Scholar 

  19. Bodis-Wollner I. Pattern evoked potential changes in Parkinson’s disease are stimulus-dependent. Neurology. 1985;35:1675–6.

    Google Scholar 

  20. Stanzione P, Piereli F, Peppe A, Bernardi G, et al. Pattern visual evoked potential abnormalities in Parkinson’s disease: effects of L-dopa therapy. Clin Vis Sci. 1989;4:115–27.

    Google Scholar 

  21. Tagliati M, Bodis-Wollner I, Yahr M. The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol. 1996;100:1–11.

    PubMed  CAS  Google Scholar 

  22. Tartaglione A, Pizio N, Bino G, et al. VEP changes in Parkinson’s disease are stimulus dependent. J Neurol Neurosurg Psychiatry. 1984;47:305–7.

    PubMed  CAS  Google Scholar 

  23. Bodis-Wollner I, Marx MS, Mitra S, et al. Visual dysfunction in Parkinson’s disease. Loss in spatiotemporal contrast sensitivity. Brain. 1987;110:1675–98.

    PubMed  Google Scholar 

  24. Regan D, Maxner C. Orientation-selective visual loss in patients with Parkinson’s disease. Brain. 1987;110:415–32.

    PubMed  Google Scholar 

  25. Mestre D, Blin O, Serratrice G, Pailhous J. Spatiotemporal contrast sensitivity differs in normal aging and Parkinson’s disease. Neurology. 1990;40: 1710–4.

    PubMed  CAS  Google Scholar 

  26. Bulens C, Meerwaldt JD, van der Wildt GJ. Effect of stimulus orientation on contrast sensitivity in Parkinson’s disease. Neurology. 1988;38:76–81.

    PubMed  CAS  Google Scholar 

  27. Delalande I, Hache JC, Forzy G, et al. Do visual-evoked potentials and spatiotemporal contrast sensitivity help to distinguish idiopathic Parkinson’s disease and multiple system atrophy? Mov Disord. 1998;13:446–52.

    PubMed  CAS  Google Scholar 

  28. Diederich NJ, Raman R, Leurgans S, Goetz CG. Progressive worsening of spatial and chromatic processing deficits in Parkinson disease. Arch Neurol. 2002;59:1249–52.

    PubMed  Google Scholar 

  29. Bodis-Wollner I. Visual contrast sensitivity. Neurology. 1988;38:336–7.

    PubMed  CAS  Google Scholar 

  30. Marx M, Bodis-Wollner I, Bobak P, et al. Temporal frequency-dependent VEP changes in Parkinson’s disease. Vision Res. 1986;26:185–93.

    PubMed  CAS  Google Scholar 

  31. Peppe A, Stanzione P, Pierelli F, et al. Visual alterations in de novo Parkinson’s disease, pattern electroretinogram latencies are more delayed and more reversible by levodopa than are visual evoked potentials. Neurology. 1995;45:1144–8.

    PubMed  CAS  Google Scholar 

  32. Gottlob I, Schneider E, Heider W, Skrandies W. Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1987;66:349–57.

    PubMed  CAS  Google Scholar 

  33. Okuda B, Tachibana H, Kawabata K, et al. Visual evoked potentials (VEPs) in Parkinson’s disease: correlation of pattern VEPs abnormality with dementia. Alzheimer Dis Assoc Disord. 1995;9:68–72.

    PubMed  CAS  Google Scholar 

  34. Adachi-Usami E. Senescence of visual function as studied by visually evoked cortical potentials. Jpn J Ophthalmol. 1992;34:81–94.

    Google Scholar 

  35. Bhaskar PA, Vanchilingam S, Bhaskar EA, et al. Effect of L-dopa on visual evoked potential in patients with Parkinson’s disease. Neurology. 1986;36:1 119–21.

    PubMed  CAS  Google Scholar 

  36. Peppe A, Stanzione P, Pierantozzi M, et al. Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol. 1998;106:374–82.

    PubMed  CAS  Google Scholar 

  37. Lee A, Harris J. Problems with perception of space in Parkinson’s disease: a questionnaire study. Neuro-ophthalmology. 1999;22:1–15.

    Google Scholar 

  38. Amick MM, Cronin-Golomb A, Gilmore GC. Visual processing of rapidly presented stimuli is normalized in Parkinson’s disease when proximal stimulus strength is enhanced. Vision Res. 2003;43:2827–35.

    PubMed  Google Scholar 

  39. Albrecht D, Quaschling U, Zippel U, Davidowa H. Effects of dopamine on neurons of the lateral geniculate nucleus: an iontophoretic study. Synapse. 1996;23:70–8.

    PubMed  CAS  Google Scholar 

  40. Zhao Y, Kerscher N, Eysel U, Funke K. Changes of contrast gain in cat dorsal lateral geniculate nucleus by dopamine receptor agonists. Neuroreport. 2001;12: 2939–45.

    PubMed  CAS  Google Scholar 

  41. Reader TA, Quesney LF. Dopamine in the visual cortex of the cat. Experientia. 1986;42:1242–4.

    PubMed  CAS  Google Scholar 

  42. Phillipson OT, Kilpatrick IC, Jones MW. Dopaminergic innervation of the primary visual cortex in the rat, and some correlations with the human cortex. Brain Res Bull. 1987;18:621–33.

    PubMed  CAS  Google Scholar 

  43. Rakic P, Lidow M. Distribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages. J Neurosci. 1995;15:2561–74.

    PubMed  CAS  Google Scholar 

  44. Bohnen NI, Minoshima S, Giordani B, et al. Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology. 1999;52:541–6.

    PubMed  CAS  Google Scholar 

  45. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil E, Scherer AJ, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, Schlyer D, Poirier J, Reisberg B, Fowler J. Prediction of cognitive decline in elderly subjects with 2-18F fluoro-2-deoxy-d-glucose/positron emission tomography (FDG/PET). Proc Natl Acad Sci USA. 2001;98:10966–71.

    PubMed  Google Scholar 

  46. Bohnen NI, Albin RL. Cholinergic denervation occurs early in Parkinson disease. Neurology. 2009;73: 256–7.

    PubMed  Google Scholar 

  47. Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.

    PubMed  CAS  Google Scholar 

  48. Blakemore C, Campbell FW. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol. 1969;203:237–60.

    PubMed  CAS  Google Scholar 

  49. Zeki S. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B Biol Sci. 1983;217:449–70.

    PubMed  CAS  Google Scholar 

  50. Tebartz van Elst L, Greenlee MW, Foley JM, Lucking CH. Contrast detection, discrimination and adaptation in patients with Parkinson’s disease and multiple system atrophy. Brain. 1997;120:2219–28.

    PubMed  Google Scholar 

  51. Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol. 2002;67:53–83.

    PubMed  CAS  Google Scholar 

  52. Wichmann T, DeLong MR. Functional neuroanatomy of the basal ganglia in Parkinson’s disease. Adv Neurol. 2003;91:9–18.

    PubMed  Google Scholar 

  53. Goldman-Rakic PS, Lidow MS, Smiley JF, Williams MS. The anatomy of dopamine in monkey and human prefrontal cortex. J Neural Transm Suppl. 1992;36: 163–77.

    PubMed  CAS  Google Scholar 

  54. Gabrieli JD. Memory systems analyses of mnemonic disorders in aging and age-related diseases. Proc Natl Acad Sci USA. 1996;93:13534–40.

    PubMed  CAS  Google Scholar 

  55. LeBras C, Pillon B, Damier P, Dubois B. At which steps of spatial working memory processing do striatofrontal circuits intervene in humans? Neuropsychologia. 1999;37:83–90.

    CAS  Google Scholar 

  56. Owen AM, Downes JJ, Sahakian BJ, et al. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia. 1990;28: 1021–34.

    PubMed  CAS  Google Scholar 

  57. Owen AM, Iddon JL, Hodges JR, et al. Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia. 1997;35: 519–32.

    PubMed  CAS  Google Scholar 

  58. Grossman M, Zurif E, Lee C, et al. Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology. 2002;16:174–81.

    PubMed  Google Scholar 

  59. Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol. 2002;51:156–64.

    PubMed  CAS  Google Scholar 

  60. Cools R, Stefanova E, Barker RA, et al. Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain. 2002;125:584–94.

    PubMed  Google Scholar 

  61. Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain. 1992;115:1727–51.

    PubMed  Google Scholar 

  62. Bäckman L, Nyberg L, Lindenberger U, Li S-L, Farde L. The correlative triad among aging, dopamine, and cognition: current status and future prospect. Neurosci Behav Rev. 2006;30:791–807.

    Google Scholar 

  63. Snow BJ, Tooyama I, McGeer EG, Yamada T, Calne DB, Takahashi H, Kimura H. Human positron emission tomographic [18 F] fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol. 1993;34:324–30.

    PubMed  CAS  Google Scholar 

  64. Rinne JO, Loennberg P, Marjamaeki P. Age-dependent decline of dopamine-D1 and dopamine D-2 receptor. Brain Res. 1990;508:349–52.

    PubMed  CAS  Google Scholar 

  65. Wang Y, Chan GLY, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ. Age-dependent decline of dopamine receptors in human brain: a PET study. Synapse. 1998;30:55–61.

    Google Scholar 

  66. Kaasinen V, Vilkman H, Hietala J, Någren K, Helenius H, Olsson H, Farde L, Rinne J. Age-related D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging. 2000;21:683–8.

    PubMed  CAS  Google Scholar 

  67. Bannon MJ, Poosch MS, Xia Y, Goebel DJ, Cassin B, Kapatos G. Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci USA. 1992;89:7095–9.

    PubMed  CAS  Google Scholar 

  68. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science. 1977;197:792–5.

    PubMed  CAS  Google Scholar 

  69. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science. 1965;150:1187–8.

    PubMed  CAS  Google Scholar 

  70. Stanzione P, Fattapposta F, Giunti P, et al. P300 variations in parkinsonian patients before and during dopaminergic monotherapy: a suggested dopamine component in P300. Electroencephalogr Clin Neurophysiol. 1991;80:446–53.

    PubMed  CAS  Google Scholar 

  71. Tachibana H, Toda L, Sugita M. Actively and passively evoked P3 latency of event-related potentials in Parkinson’s disease. J Neurol Sci. 1992;111:134–42.

    PubMed  CAS  Google Scholar 

  72. Goodin DS, Aminoff LM. Electrophysiological differences between demented and nondemented patients with Parkinson’s disease. Ann Neurol. 1987;21:90–4.

    PubMed  CAS  Google Scholar 

  73. Toda K, Tachibana H, Sugita M, Konishi K. P300 and reaction time in Parkinson’s disease. J Geriatr Psychiatry Neurol. 1993;6:131–6.

    PubMed  CAS  Google Scholar 

  74. Wang L, Kuroiwa Y, Li M, et al. The correlation between P300 alterations and regional cerebral blood flow in non-demented Parkinson’s disease. Neurosci Lett. 2000;282:133–6.

    PubMed  CAS  Google Scholar 

  75. Antal A, Pfeiffer R, Bodis-Wollner I. Simultaneously evoked primary and cognitive visual evoked potentials distinguish younger and older patients with Parkinson’s disease. J Neural Transm. 1996;103: 1053–67.

    PubMed  CAS  Google Scholar 

  76. Sagliocco L, Bandini F, Pierantozzi M, et al. Electrophysiological evidence for visuocognitive dysfunction in younger non Caucasian patients with Parkinson’s disease. J Neural Transm. 1997;104: 427–39.

    PubMed  CAS  Google Scholar 

  77. Tachibana H, Aragane K, Miyata Y, Sugita M. Electrophysiological analysis of cognitive slowing in Parkinson’s disease. J Neurol Sci. 1997;149:47–56.

    PubMed  CAS  Google Scholar 

  78. Bodis-Wollner I, Borod JC, Cicero B, et al. Modality dependent changes in event-related potentials correlate with specific cognitive functions in nondemented patients with Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1995;9:197–209.

    PubMed  CAS  Google Scholar 

  79. Bodis-Wollner I, Tzelepi A, Sagliocco L, et al. Visual processing deficit in Parkinson disease. In: Koga Y, Nagata K, Hirata K, editors. Brain topography today. Amsterdam: Elsevier; 1998. p. 606–11.

    Google Scholar 

  80. Stamenovic J, Djuric S, Jolic M, Zivadinovic B, Djuric V. Examinations of cognitive functions in patients with Parkinson’s disease. Med Biol. 2004;11:80–6.

    Google Scholar 

  81. Wang L, Kuroiwa Y, Kamitani T, et al. Effect of interstimulus interval on visual P300 in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67: 497–503.

    PubMed  CAS  Google Scholar 

  82. Maeshima S, Itakura T, Komai N, Matsumoto T, Ueyoksi A. Relationships between event-related potentials (P300) and activities of daily living in Parkinson’s disease. Brain Inj. 2002;16:1–8.

    PubMed  Google Scholar 

  83. Glover A, Ghilardi MF, Bodis-Wollner I, Onofrj M. Alterations in event-related potentials (ERPs) of MPTP-treated monkeys. Electroencephalogr Clin Neurophysiol. 1988;71:461–8.

    PubMed  CAS  Google Scholar 

  84. Antal A, Keri S, Bodis-Wollner I. Dopamine D2 receptor blockade alters the primary and cognitive components of visual evoked potentials in the monkey, Macaca fascicularis. Neurosci Lett. 1997;232:179–81.

    PubMed  CAS  Google Scholar 

  85. Goldman-Rakic PS. The cortical dopamine system: role in memory and cognition. Adv Pharmacol. 1998;42:707–11.

    PubMed  CAS  Google Scholar 

  86. Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol. 1998;106:156–64.

    PubMed  CAS  Google Scholar 

  87. Chase TN, Mouradian MM, Fabbrini G, Juncos JL. Pathogenetic studies of motor fluctuations in Parkinson’s disease. J Neural Transm Suppl. 1988;27:3–10.

    PubMed  CAS  Google Scholar 

  88. Sohn YH, Kim GW, Huh K, Kim JS. Dopaminergic influences on the P300 abnormality in Parkinson’s disease. J Neurol Sci. 1998;158:83–7.

    PubMed  CAS  Google Scholar 

  89. Hansch EC, Syndulko K, Cohen SN, Tourtellotte WW, et al. Cognition in Parkinson disease: an event-related potential perspective. Ann Neurol. 1982;11:599–607.

    PubMed  CAS  Google Scholar 

  90. Prasher D, Findley L. Dopaminergic induced changes in cognitive and motor processing in Parkinson’s disease: an electrophysiological investigation. J Neurol Neurosurg Psychiatry. 1991;54:603–9.

    PubMed  CAS  Google Scholar 

  91. Pillon B, Deweer B, Vidailhet M, et al. Is impaired memory for spatial location in Parkinson’s disease domain specific or dependent on “strategic” processes? Neuropsychologia. 1998;36:1–9.

    PubMed  CAS  Google Scholar 

  92. Bandini F, Pierantozzi M, Bodis-Wollner I. The visuo-cognitive and motor effect of amantadine in non-Caucasian patients with Parkinson’s disease. A clinical and electrophysiological study. J Neural Transm. 2002;109:41–51.

    PubMed  CAS  Google Scholar 

  93. Kurita A, Murakami M, Takagi S, Matsushima M, Suzuki M. Visual hallucinations and altered visual information processing in Parkinson disease and dementia with Lewy bodies. Mov Disord. 2010;25: 167–71.

    PubMed  Google Scholar 

  94. Baddeley A. Recent developments in working memory. Curr Opin Neurobiol. 1998;8:234–8.

    PubMed  CAS  Google Scholar 

  95. Lee AC, Harris JP, Calvert JE. Impairments of mental rotation in Parkinson’s disease. Neuropsychologia. 1998;36:109–14.

    PubMed  CAS  Google Scholar 

  96. Moreaud O, Fournet N, Roulin JL, et al. The phonological loop in medicated patients with Parkinson’s disease: presence of phonological similarity and word length effects. J Neurol Neurosurg Psychiatry. 1997;62:609–11.

    PubMed  CAS  Google Scholar 

  97. Postle BR, Jonides J, Smith EE, et al. Spatial but not object, delayed response is impaired in early Parkinson’s disease. Neuropsychology. 1997;11: 171–9.

    PubMed  CAS  Google Scholar 

  98. Lagopoulos J, Gordon E, Barhamali H, Lim CL, Li WM, Clouston P, Morris JG. Dysfunctions of automatic (P300a) and controlled (P300b) processing in Parkinson’s disease. Neurol Res. 1998;20:5–10.

    PubMed  CAS  Google Scholar 

  99. Tsuchiya H, Yamaguchi S, Kobayashi S. Impaired novelty detection and frontal lobe dysfunction in Parkinson disease. Neuropsychologia. 2000;38: 645–54.

    PubMed  CAS  Google Scholar 

  100. Bokura H, Yamaguchi S, Kobayashi S. Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia. 2005;43:967–75.

    PubMed  Google Scholar 

  101. Tales A, Newton P, Troscianko T, Butler S. Mismatch negativity in the visual modality. Neuroreport. 1999;10:3363–7.

    PubMed  CAS  Google Scholar 

  102. Coull JT. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol. 1998;55:343–61.

    PubMed  CAS  Google Scholar 

  103. Kotchoubey B, Lang S. Parallel processing of physical and lexical auditory information in humans. Neurosci Res. 2003;45:369–74.

    PubMed  Google Scholar 

  104. Harnad S. Categorical perception: the groundwork of cognition. New York: Cambridge University Press; 1987.

    Google Scholar 

  105. Hillyard SA, Teder-Salejarvi WA, Münte TF. Temporal dynamics of early perceptual processing. Curr Opin Neurobiol. 1998;8:202–10.

    PubMed  CAS  Google Scholar 

  106. Schendan HE, Ganis G, Kutas M. Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology. 1998;35:240–51.

    PubMed  CAS  Google Scholar 

  107. Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381: 520–2.

    PubMed  CAS  Google Scholar 

  108. Van Rullen R, Thorpe SJ. The time course of visual processing: from early perception to decision-making. J Cogn Neurosci. 2001;13:454–61.

    Google Scholar 

  109. Antal A, Keri S, Dibo G, et al. Electrophysiological correlates of visual categorization: evidence for cognitive dysfunctions in early Parkinson’s disease. Brain Res Cogn Brain Res. 2002;13:153–8.

    PubMed  Google Scholar 

  110. Antal A, Keri S, Kincses T, et al. Corticostriatal circuitry mediates fast-track visual categorization. Brain Res Cogn Brain Res. 2002;13:53–9.

    PubMed  Google Scholar 

  111. Kropotov JD, Etlinger SC. Selection of actions in the basal ganglia-thalamocortical circuits: review and model. Int J Psychophysiol. 1999;31:197–217.

    PubMed  CAS  Google Scholar 

  112. Farah M, Humphreys GW, Rodman HR. Object and face recognition. In: Zigmond MJ, Bloom FE, Landis SC, et al., editors. Fundamental neuroscience. New York: Academic; 1999. p. 1339–61.

    Google Scholar 

  113. Vogels R. Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. Eur J Neurosci. 1999;11:1239–55.

    PubMed  CAS  Google Scholar 

  114. Cheng K, Saleem KS, Tanaka K. Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J Neurosci. 1997;17:7902–25.

    PubMed  CAS  Google Scholar 

  115. Miyata Y, Tachibana H, Sugita M. Memory function in aging and Parkinson’s disease – an event-related potential study. Nippon Ronen Igakkai Zasshi. 1998;35:464–71.

    PubMed  CAS  Google Scholar 

  116. Tachibana H, Miyata Y, Takeda M, et al. Event-related potentials reveal memory deficits in Parkinson’s disease. Brain Res Cogn Brain Res. 1999;8:165–72.

    PubMed  CAS  Google Scholar 

  117. Barrett SE, Rugg MD. Event-related potentials and the semantic matching of pictures. Brain Cogn. 1990;14:201–12.

    PubMed  CAS  Google Scholar 

  118. Friedman D. Cognitive event-related potential components during continuous recognition memory for pictures. Psychophysiology. 1990;27:136–48.

    PubMed  CAS  Google Scholar 

  119. Kutas M, Hillyard SA. Brain potentials during reading reflect word expectancy and semantic association. Nature. 1984;307:161–3.

    PubMed  CAS  Google Scholar 

  120. Cohen JD, Servan-Schreiber D. Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev. 1992;99: 45–77.

    PubMed  CAS  Google Scholar 

  121. Bodis-Wollner I. Visualizing the next steps in Parkinson disease. Arch Neurol. 2002;59:1233–4.

    PubMed  Google Scholar 

  122. Basar-Eroglu C, Basar E. A compound P300–40 Hz response of the cat hippocampus. Int J Neurosci. 1991;60:227–37.

    PubMed  CAS  Google Scholar 

  123. Cassidy M, Brown P. Task-related EEG-EEG coherence depends on dopaminergic activity in Parkinson’s disease. Neuroreport. 2001;12:703–7.

    PubMed  CAS  Google Scholar 

  124. Marinelli L, Crupi D, Di Rocco A, Bove M, Eidelberg D, Abbruzzese G, Ghilardi MF. Learning and consolidation of visuo-motor adaptation in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:6–11.

    PubMed  Google Scholar 

  125. Raskin SA, Borod JC, Wasserstein J, Bodis-Wollner I, Coscia L, Yahr MD. Visuospatial orientation in Parkinson’s disease. Intern J Neurosci. 1990;51:9–18.

    CAS  Google Scholar 

  126. Crucian GP, Okun MS. Visual-spatial ability in Parkinson’s disease. Front Biosci. 2003;8:s992–7.

    PubMed  Google Scholar 

  127. Nobre AC, Gitelman DR, Dias EC, Mesulam MM. Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage. 2000;11:210–6.

    PubMed  CAS  Google Scholar 

  128. Schlag J, Dassonville P, Schlag-Rey M. Interaction of two frontal eye fields before saccade onset. J Neurophysiol. 1998;79:64–72.

    PubMed  CAS  Google Scholar 

  129. Rieger JW, Kim A, Argyelan M, Farber M, Glazman S, Liebeskind M, Bodis-Wollner I. Cortical control of voluntary saccades in Parkinson’s disease. Electroencephalogr Clin Neurosci. 2008;39:169–74.

    Google Scholar 

  130. van der Togt C, Kalitzin S, Spekreijse H, Lamme VA, Supèr H. Synchrony dynamics in monkey V1 predict success in visual detection. Cereb Cortex. 2006;16:136–48.

    PubMed  Google Scholar 

  131. Brown J, Bullock D, Grossberg S. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw. 2004;17:471–510.

    PubMed  Google Scholar 

  132. von Stein A, Chiang C, König P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA. 2000;97:14748–53.

    Google Scholar 

  133. Brown P, Marsden CD. What does the basal ganglia do? Lancet. 1998;351:1801–4.

    PubMed  CAS  Google Scholar 

  134. Bodis-Wollner I, Von Gizycki H, Avitable M, Hussain Z, Javeid A, Habib A, Raza A, Sabet M. Perisaccadic occipital EEG changes quantified with wavelet analysis. Ann N Y Acad Sci. 2002;956: 464–7.

    PubMed  CAS  Google Scholar 

  135. Sommer M, Wurtz RH. A pathway in primate brain for internal monitoring of movements. Science. 2002;296:1480–2.

    PubMed  CAS  Google Scholar 

  136. Paulus WM, Straube A, Brandt T. Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain. 1984;107:1143–63.

    PubMed  Google Scholar 

  137. Baumberger B, Isableu B, Flückiger M. The visual control of stability in children and adults: postural readjustments in a ground optical flow. Exp Brain Res. 2004;159:33–46.

    PubMed  Google Scholar 

  138. Suarez H, Geisinger D, Suarez A, Carrera X, Buzo R, Amorin I. Postural control and sensory perception in patients with Parkinson’s disease. Acta Otolaryngol. 2008;19:1–7.

    Google Scholar 

  139. Peppe A, Stanzione P, Pierelli F, et al. Low contrast stimuli enhance PERG sensitivity to the visual dysfunction in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1992;82:453–7.

    PubMed  CAS  Google Scholar 

  140. Brown RG, Marsden CD. Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci. 1990;13:21–9.

    PubMed  CAS  Google Scholar 

  141. Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, Ota T, Asahina M, Fukushi K, Kuwabara S, Hattori T, Suhara T, Irie T. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73:273–8.

    PubMed  CAS  Google Scholar 

  142. Mari Z, Sagliocco L, Bodis-Wollner I. Retinocortical gain in the foveal pathway: the effect of spatial frequency and stimulus size. Clin Electroencephalogr. 2001;32:67–74.

    PubMed  CAS  Google Scholar 

  143. Brown LA, Cooper SA, Doan JB, Dickin DC, Whishaw IQ, Pellis SM, Suchowersky O. Impaired foveal processing and cognitive visual deficits in PD warrant further studies. Parkinsonism Relat Disord. 2006;12:376–81.

    PubMed  Google Scholar 

Download references

Acknowledgments

I. Bodis-Wollner was partially supported by the Hanse Institute of Advanced Studies, Delemhorst, Germany the National Parkinson Foundation, National Institute of Neurological Diseases and by the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bodis-Wollner M.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bodis-Wollner, I., Antal, A. (2013). Primary Visual and Visuocognitive Deficits. In: Pfeiffer, R.F., Bodis-Wollner, I. (eds) Parkinson’s Disease and Nonmotor Dysfunction. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-429-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-429-6_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-428-9

  • Online ISBN: 978-1-60761-429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics