Skip to main content

Primary Hypertriglyceridemia

  • Chapter
  • First Online:
Dyslipidemias

Part of the book series: Contemporary Endocrinology ((COE))

  • 2252 Accesses

Abstract

Hypertriglyceridemia (HTG) is a common clinical and biochemical diagnosis. HTG clusters in families, but usually does not show classical Mendelian patterns of inheritance. The exception is “familial chylomicronemia,” in which severe HTG results from autosomal recessive inheritance rare loss-of-function mutations in genes such as lipoprotein lipase (LPL), apolipoprotein C-II (APOC2), apolipoprotein A-V (APOA5), lipase maturation factor 1 (LMF1), and glycosyl-phosphatidyl-inositol-anchored HDL-binding protein (GPIHBP1). In contrast, common primary HTG in most patients is polygenic rather than monogenic—including those with such classical “familial” phenotypes as combined hyperlipidemia (HLP type 2B), dysbetalipoproteinemia (HLP type 3), simple HTG (HLP type 4), and mixed hyperlipidemia (HLP type 5). These latter four polygenic phenotypes are similar at the genetic level, and result from accumulation of multiple common small-effect genetic variants—single-nucleotide polymorphisms—together with occasional heterozygous rare large-effect variants. Here, we discuss molecular genetic, clinical, and therapeutic aspects of the HTG disorders, except for familial combined hyperlipoproteinemia, which is discussed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007;176:1113–20.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  3. Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AFH. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2969–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52:189–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Johansen CT, Hegele RA. Genetic bases of hypertriglyceridemic phenotypes. Curr Opin Lipidol. 2011;22:247–53.

    Article  CAS  PubMed  Google Scholar 

  6. Johansen CT, Hegele RA. Allelic and phenotypic spectrum of plasma triglycerides. Biochim Biophys Acta. 2012;1821:833–42.

    Article  CAS  PubMed  Google Scholar 

  7. Hegele RA, Ban MR, Hsueh N, Kennedy BA, Cao H, Zou GY, Anand S, Yusuf S, Huff MW, Wang J. A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia. Hum Mol Genet. 2009;18:4189–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–21.

    Article  CAS  PubMed  Google Scholar 

  9. Feoli-Fonseca JC, Lévy E, Godard M, Lambert M. Familial lipoprotein lipase deficiency in infancy: clinical, biochemical, and molecular study. J Pediatr. 1998;133:417–23.

    Article  CAS  PubMed  Google Scholar 

  10. Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab. 2008;93:282–94.

    Article  CAS  PubMed  Google Scholar 

  11. Wilson CJ, Priore Oliva C, Maggi F, Catapano AL, Calandra S. Apolipoprotein C-II deficiency presenting as a lipid encephalopathy in infancy. Ann Neurol. 2003;53:807–10.

    Article  PubMed  Google Scholar 

  12. Hall LD, Ferringer T. The best diagnosis is: eruptive xanthoma. Cutis. 2012;90:15–6.

    Google Scholar 

  13. Gotoda T, Shirai K, Ohta T, Kobayashi J, Yokoyama S, Oikawa S, Bujo H, Ishibashi S, Arai H, Yamashita S, Harada-Shiba M, Eto M, Hayashi T, Sone H, Suzuki H, Yamada N. Research committee for primary hyperlipidemia, research on measures against intractable diseases by the ministry of health, labour and welfare in japan. diagnosis and management of type I and type V hyperlipoproteinemia. J Atheroscler Thromb. 2012;19:1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Kawashiri MA, Higashikata T, Mizuno M, Takata M, Katsuda S, Miwa K, Nozue T, Nohara A, Inazu A, Kobayashi J, Koizumi J, Mabuchi H. Long-term course of lipoprotein lipase (LPL) deficiency due to homozygous LPL(Arita) in a patient with recurrent pancreatitis, retained glucose tolerance, and atherosclerosis. J Clin Endocrinol Metab. 2005;90:6541–4.

    Article  CAS  PubMed  Google Scholar 

  15. Sandhu S, Al-Sarraf A, Taraboanta C, Frohlich J, Francis GA. Incidence of pancreatitis, secondary causes, and treatment of patients referred to a specialty lipid clinic with severe hypertriglyceridemia: a retrospective cohort study. Lipids Health Dis. 2011;10:157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Khokhar AS, Seidner DL. The pathophysiology of pancreatitis. Nutr Clin Pract. 2004;19:5–15.

    Article  PubMed  Google Scholar 

  17. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31:1716–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Benlian P, De Gennes JL, Foubert L, Zhang H, Gagné SE, Hayden M. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med. 1996;335:848–54.

    Article  CAS  PubMed  Google Scholar 

  19. Beil U, Grundy SM, Crouse JR, Zech L. Triglyceride and cholesterol metabolism in primary hypertriglyceridemia. Arteriosclerosis. 1982;2:44–57.

    Article  CAS  PubMed  Google Scholar 

  20. Rahalkar AR, Giffen F, Har B, Ho J, Morrison KM, Hill J, Wang J, Hegele RA, Joy T. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can J Physiol Pharmacol. 2009;87:151–60.

    Article  CAS  PubMed  Google Scholar 

  21. Connelly PW, Maguire GF, Hofmann T, Little JA. Structure of apolipoprotein C-IIToronto, a nonfunctional human apolipoprotein. Proc Natl Acad Sci U S A. 1987;84:270–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Calandra S, Priore Oliva C, Tarugi P, Bertolini S. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr Opin Lipidol. 2006;17:122–7.

    Article  CAS  PubMed  Google Scholar 

  23. Young SG, Davies BS, Voss CV, Gin P, Weinstein MM, Tontonoz P, Reue K, Bensadoun A, Fong LG, Beigneux AP. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res. 2011;52:169–84.

    Article  Google Scholar 

  24. Péterfy M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim Biophys Acta. 2012;1821:790–4.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ewald N, Kloer HU. Severe hypertriglyceridemia: an indication for apheresis? Atheroscler Suppl. 2009;10:49–52.

    Article  CAS  PubMed  Google Scholar 

  26. Gaudet D, de Wal J, Tremblay K, Déry S, van Deventer S, Freidig A, Brisson D, Méthot J. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler Suppl. 2010;11:55–60.

    Article  CAS  PubMed  Google Scholar 

  27. Melchiorri D, Pani L, Gasperini P, Cossu G, Ancans J, Borg JJ, Drai C, Fiedor P, Flory E, Hudson I, Leufkens HG, Muller-Berghaus J, Narayanan G, Neugebauer B, Pokrotnieks J, Robert JL, Salmonson T, Schneider CK. Regulatory evaluation of Glybera in Europe—two committees, one mission. Nature Rev Drug Discov. 2013;12:719.

    Article  CAS  Google Scholar 

  28. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR, Martins RA, Kennedy BA, Hassell RG, Visser ME, Schwartz SM, Voight BF, Elosua R, Salomaa V, O’Donnell CJ, Dallinga-Thie GM, Anand SS, Yusuf S, Huff MW, Kathiresan S, Hegele RA. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010;42:684–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Johansen CT, Wang J, McIntyre AD, Martins RA, Ban MR, Lanktree MB, Huff MW, Péterfy M, Mehrabian M, Lusis AJ, Kathiresan S, Anand SS, Yusuf S, Lee AH, Glimcher LH, Cao H, Hegele RA. Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia. Circ Cardiovasc Genet. 2012;5:66–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Johansen CT, Wang J, Lanktree MB, McIntyre AD, Ban MR, Martins RA, Kennedy BA, Hassell RG, Visser ME, Schwartz SM, Voight BF, Elosua R, Salomaa V, O’Donnell CJ, Dallinga-Thie GM, Anand SS, Yusuf S, Huff MW, Kathiresan S, Cao H, Hegele RA. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2011;31:1916–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mahley RW, Huang Y, Rall SC Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia) Questions, quandaries, and paradoxes. J Lipid Res. 1999;40:1933–49.

    CAS  PubMed  Google Scholar 

  33. Evans D, Aberle J, Beil FU. The relative importance of common and rare genetic variants in the development of hypertriglyceridemia. Expert Rev Cardiovasc Ther. 2011;9:637–44.

    Article  CAS  PubMed  Google Scholar 

  34. Tullu MS, Advirkar AV, Ghildiyal RG, Tambe S. Familial hypertriglyceridemia. Indian J Pediatr. 2008;75:1257–8.

    Article  PubMed  Google Scholar 

  35. Lampman RM, Santinga JT, Hodge MF, Block WD, Flora JD Jr, Bassett DR. Comparative effects of physical training and diet in normalizing serum lipids in men with Type IV hyperlipoproteinemia. Circulation. 1977;55:652–9.

    Article  CAS  PubMed  Google Scholar 

  36. Keating GM. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs. 2011;11:227–47.

    Article  CAS  PubMed  Google Scholar 

  37. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  Google Scholar 

  38. Lauring B, Taggart AK, Tata JR, et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci Transl Med. 2012;4:148.

    Article  Google Scholar 

  39. Creider JC, Hegele RA, Joy TR. Niacin: another look at an underutilized lipid-lowering medication. Nat Rev Endocrinol. 2012;8:517–28.

    Article  CAS  PubMed  Google Scholar 

  40. Cholesterol Treatment Trialists’ (CTT) Collaborators Mihaylova B Emberson J Blackwell L Keech A Simes J Barnes EH Voysey M Gray A Collins R Baigent C. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–90.

    Article  Google Scholar 

  41. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308:1024–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RAH is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Canada Research Chair in Human Genetics, the Martha G. Blackburn Chair in Cardiovascular Research, and operating grants from the CIHR (MOP-13430, MOP-79523, CTP-79853), the Heart and Stroke Foundation of Ontario (NA-6059, T-6018, PRG-4854) and Genome Canada through the Ontario Genomics Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Brahm MD, BMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Brahm, A., Hegele, R. (2015). Primary Hypertriglyceridemia. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics