Skip to main content

Diagnosis of Clostridium difficile Infection Using Real-Time PCR

  • Protocol
  • First Online:
PCR Detection of Microbial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 943))

Abstract

Clostridium difficile is known to cause antibiotic-associated diarrhea and pseudomembranous colitis. Toxinogenic strains of the bacterium produce toxins A (TcdA) and B (TcdB), which are associated with the pathogenicity. The standard methods for diagnosis of C. difficile infection include the cell cytotoxicity assay and the culture of a toxinogenic strain. Due to the long turnaround time of these methods, more rapid methods are preferred. Enzyme immunoassays are fast, but lack sensitivity. Therefore, real-time PCR methods have been developed.

The real-time PCR described in this chapter detects tcdB, the gene coding for toxin B. Since toxin A-negative, toxin B-positive strains have been reported to cause disease as well, these strains can also be detected by this method which uses an automated STAR-MagnaPure method for the optimum isolation of DNA from feces. An internal control is included as well to control for inhibition of the PCR method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barroso LA, Wang SZ, Phelps CJ, Johnson JL, Wilkins TD (1990) Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res 18:4004

    Article  PubMed  CAS  Google Scholar 

  2. Dove CH, Wang SZ, Price SB, Phelps CJ, Lyerly DM, Wilkins TD et al (1990) Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58:480–488

    PubMed  CAS  Google Scholar 

  3. Lyerly DM, Lockwood DE, Richardson SH, Wilkins TD (1982) Biological activities of toxins A and B of Clostridium difficile. Infect Immun 35:1147–1150

    PubMed  CAS  Google Scholar 

  4. Lyerly DM, Saum KE, MacDonald DK, Wilkins TD (1985) Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352

    PubMed  CAS  Google Scholar 

  5. Kato H, Kato N, Watanabe K, Iwai N, Nakamura H, Yamamoto T et al (1998) Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182

    PubMed  CAS  Google Scholar 

  6. Kuijper EJ, de Weerdt J, Kato H, Kato N, van Dam AP, van der Vorm ER, Weel J, van Rheenen C, Dankert J (2001) Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis 20:528–534

    PubMed  CAS  Google Scholar 

  7. van den Berg RJ, Claas EC, Oyib DH, Klaassen CH, Dijkshoorn L, Brazier JS et al (2004) Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42:1035–1041

    Article  PubMed  Google Scholar 

  8. Goorhuis A, Legaria MC, van den Berg RJ, Harmanus C, Klaassen CH, Brazier JS, Lumelsky G, Kuijper EJ (2009) Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect 15(12):1080–1086

    Article  PubMed  CAS  Google Scholar 

  9. Geric B, Carman RJ, Rupnik M, Genheimer CW, Sambol SP, Lyerly DM et al (2006) Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis 193:1143–1150

    Article  PubMed  CAS  Google Scholar 

  10. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    PubMed  CAS  Google Scholar 

  11. Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt WD, Wehland J, Aktories K (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5(10):e1000626

    Article  PubMed  Google Scholar 

  12. van den Berg RJ, Vaessen N, Endtz HP, Schulin T, van der Vorm ER, Kuijper EJ (2007) Evaluation of real-time PCR and conventional diagnostic methods for the detection of Clostridium difficile-associated diarrhoea in a prospective multicentre study. J Med Microbiol 56:36–42

    Article  PubMed  Google Scholar 

  13. Belanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol 41:730–734

    Article  PubMed  CAS  Google Scholar 

  14. Peterson LR, Manson RU, Paule SM, Hacek DM, Robicsek A, Jr Thomson RB et al (2007) Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. Clin Infect Dis 45:1152–1160

    Article  PubMed  CAS  Google Scholar 

  15. Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE (2008) Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol 46:1996–2001

    Article  PubMed  CAS  Google Scholar 

  16. van den Berg RJ, Kuijper EJ, van Coppenraet LE, Claas EC (2006) Rapid diagnosis of toxinogenic Clostridium difficile in faecal samples with internally controlled real-time PCR. Clin Microbiol Infect 12:184–186

    Article  PubMed  Google Scholar 

  17. Stamper PD, Alcabasa R, Aird D, Babiker W, Wehrlin J, Ikpeama I et al (2009) Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. J Clin Microbiol 47:373–378

    Article  PubMed  CAS  Google Scholar 

  18. Huang H, Weintraub A, Fang H, Nord CE (2009) Comparison of a commercial multiplex real-time PCR to the cell cytotoxicity neutralization assay for diagnosis of clostridium difficile infections. J Clin Microbiol 47(11): 3729–3731

    Article  PubMed  Google Scholar 

  19. Niesters HG (2002) Clinical virology in real time. J Clin Virol 25(Suppl 3):S3–S12

    Article  PubMed  CAS  Google Scholar 

  20. Barbut F, Delmee M, Brazier JS, Petit JC, Poxton IR, Rupnik M et al (2003) A European survey of diagnostic methods and testing protocols for Clostridium difficile. Clin Microbiol Infect 9:989–996

    Article  PubMed  CAS  Google Scholar 

  21. Johnson S, Gerding DN (1998) Clostridium difficile–associated diarrhea. Clin Infect Dis 26:1027–1034

    Article  PubMed  CAS  Google Scholar 

  22. Freeman J, Wilcox MH (2003) The effects of storage conditions on viability of Clostridium difficile vegetative cells and spores and toxin activity in human faeces. J Clin Pathol 56: 126–128

    Article  PubMed  CAS  Google Scholar 

  23. Wilcox MH (1998) Clostridium difficile infection: appendix. J Antimicrob Chemother 41(Suppl C):71–72

    Article  PubMed  CAS  Google Scholar 

  24. Brazier JS (1998) The diagnosis of Clostridium difficile-associated disease. J Antimicrob Chemother 41(Suppl C):29–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ingrid Sanders for her help in optimizing the DNA isolation protocol and real-time PCR conditions. We also would like to thank the department of Clinical Microbiology Laboratory for providing the correct protocols for the use of the MagnaPure and CFX96 systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed J. Kuijper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van den Berg, R.J., Bakker, D., Kuijper, E.J. (2013). Diagnosis of Clostridium difficile Infection Using Real-Time PCR. In: Wilks, M. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology, vol 943. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-353-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-353-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-352-7

  • Online ISBN: 978-1-60327-353-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics