Skip to main content

Cancer Drug Discovery and Anticancer Drug Development

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

This chapter focuses on the concepts relating to the discovery and the development of new drugs for cancer therapy. The purpose is to discuss the practices involved in the discovery and the development for clinical application of molecular-targeted therapeutics, new effective and safe anticancer agents that target critical cancer pathways. The concept of molecular-targeted therapeutic approach, which has now become the paradigm governing the present-day drug discovery process, and the related concepts of molecular targets, target identification and selection, as well as target validation in terms of the processes to explore the biological and therapeutic significance of the target are all discussed. The chapter also briefly outlines strategies that have resulted in some of the well-known new therapeutic agents that are currently approved or near approval for clinical use. In these cases, specific drug candidates are used to exemplify the translation from concepts to the finished products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown D. Target selection and pharma industry productivity: what can we learn from technology S-curve theory? Curr Opin Drug Discov Devel. 2006;9:414–8.

    CAS  PubMed  Google Scholar 

  2. Kimura F. Molecular target drug discovery. Intern Med. 2007;46:87–9.

    Article  PubMed  Google Scholar 

  3. Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. Proof of concept: a review on how network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther. 2010;9:3137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31:115–23.

    Article  CAS  PubMed  Google Scholar 

  5. Finley RS. Overview of targeted therapies for cancer. Am J Health Syst Pharm. 2003;60:S4–10.

    CAS  PubMed  Google Scholar 

  6. Gallo JM. Pharmacokinetic/pharmacodynamic-driven drug development. Mount Sinai J Med. 2010;77:381–8.

    Article  Google Scholar 

  7. Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today. 2005;10:139–47.

    Article  CAS  PubMed  Google Scholar 

  8. Egner U, Kratzschmar J, Kreft B, Pohlenz HD, Schneider M. The target discovery process. Chembiochem. 2005;6:468–79.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang J, Marshall JL. Targeted therapy for colorectal cancer. Curr Opin Investig Drugs. 2006;7:1062–6.

    CAS  PubMed  Google Scholar 

  10. Williams M. Target validation. Curr Opin Pharmacol. 2003;3:571–7.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider M. A rational approach to maximize success rate in target discovery. Arch Pharm (Weinheim). 2004;337:625–33.

    Article  CAS  Google Scholar 

  12. Wang S, Sim TB, Kim YS, Chang YT. Tools for target identification and validation. Curr Opin Chem Biol. 2004;8:371–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hardy LW, Peet NP. The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discov Today. 2004;9:117–26.

    Article  CAS  PubMed  Google Scholar 

  14. Hooft van Huijsduijnen R, Rommel C. Decompartmentalizing target validation-thinking outside the pipeline boxes. J Mol Med. 2006;84:802–13.

    Article  PubMed  Google Scholar 

  15. Drews J. Drug discovery: a historical perspective. Science. 2000;287:1960–4.

    Article  CAS  PubMed  Google Scholar 

  16. Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science. 2000;287:1969–73.

    Article  CAS  PubMed  Google Scholar 

  17. Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 2000;19:6613–26.

    Article  CAS  PubMed  Google Scholar 

  18. Sioud M, Leirdal M. Druggable signaling proteins. Methods Mol Biol. 2007;361:1–24.

    CAS  PubMed  Google Scholar 

  19. Brown D, Superti-Furga G. Rediscovering the sweet spot in drug discovery. Drug Discov Today. 2003;8:1067–77.

    Article  PubMed  Google Scholar 

  20. Ward RA. Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target. J Mol Model. 2010;16:1833–43.

    Article  CAS  PubMed  Google Scholar 

  21. Brana MF, Sanchez-Migallon A. Anticancer drug discovery and pharmaceutical chemistry: a history. Clin Transl Oncol. 2006;8:717–28.

    Article  CAS  PubMed  Google Scholar 

  22. Bianco R, Melisi D, Ciardiello F, Tortora G. Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer. 2006;42:290–4.

    Article  CAS  PubMed  Google Scholar 

  23. Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol. 2005;23:5386–403.

    Article  CAS  PubMed  Google Scholar 

  24. Adjei AA. Targeting multiple signal transduction pathways in lung cancer. Clin Lung Cancer. 2005;7:S39–44.

    Article  PubMed  Google Scholar 

  25. Sehgal A. Delivering peptides and proteins to tumors. Drug Discov Today. 2003;8:619.

    Article  PubMed  Google Scholar 

  26. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211–25.

    Article  CAS  PubMed  Google Scholar 

  27. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992;9:383–91.

    Article  CAS  PubMed  Google Scholar 

  28. Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin Cancer Biol. 1993;4:19–26.

    CAS  PubMed  Google Scholar 

  29. Hynes NE, Horsch K, Olayioye MA, Badache A. The ErbB receptor tyrosine family as signal integrators. Endocr Relat Cancer. 2001;8:151–9.

    Article  CAS  PubMed  Google Scholar 

  30. Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001;3:385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabbro D, Ruetz S, Buchdunger E, et al. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther. 2002;93:79–98.

    Article  CAS  PubMed  Google Scholar 

  32. Traxler P. Tyrosine kinases as targets in cancer therapy—successes and failures. Expert Opin Ther Targets. 2003;7:215–34.

    Article  CAS  PubMed  Google Scholar 

  33. Sattler M, Pride YB, Ma P, et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 2003;63:5462–9.

    CAS  PubMed  Google Scholar 

  34. Barragan M, Campas C, Bellosillo B, Gil J. Protein kinases in the regulation of apoptosis in B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44:1865–70.

    Article  CAS  PubMed  Google Scholar 

  35. Ochs JS. Rationale and clinical basis for combining gefitinib (IRESSA, ZD1839) with radiation therapy for solid tumors. Int J Radiat Oncol Biol Phys. 2004;58:941–9.

    Article  CAS  PubMed  Google Scholar 

  36. Albanell J, Gascon P. Small molecules with EGFR-TK inhibitor activity. Curr Drug Targets. 2005;6:259–74.

    Article  CAS  PubMed  Google Scholar 

  37. Caponigro F, Formato R, Caraglia M, Normanno N, Iaffaioli RV. Monoclonal antibodies targeting epidermal growth factor receptor and vascular endothelial growth factor with a focus on head and neck tumors. Curr Opin Oncol. 2005;17:212–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kim D, Cheng GZ, Lindsley CW, Yang H, Cheng JQ. Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr Opin Investig Drugs. 2005;6:1250–8.

    CAS  PubMed  Google Scholar 

  39. Caponigro F, Basile M, de Rosa V, Normanno N. New drugs in cancer therapy, National Tumor Institute, Naples, 17–18 June 2004. Anticancer Drugs. 2005;16:211–21.

    Article  CAS  PubMed  Google Scholar 

  40. Sawyers CL, Druker B. Tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J Sci Am. 1999;5:63–9.

    CAS  PubMed  Google Scholar 

  41. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    Article  CAS  PubMed  Google Scholar 

  42. Naruganahalli KS, Lakshmanan M, Dastidar SG, Ray A. Therapeutic potential of Aurora kinase inhibitors in cancer. Curr Opin Investig Drugs. 2006;7:1044–51.

    CAS  PubMed  Google Scholar 

  43. Redaelli C, Granucci F, De Gioia L, Cipolla L. Synthesis and biological activity of Akt/PI3K inhibitors. Mini Rev Med Chem. 2006;6:1127–36.

    Article  CAS  PubMed  Google Scholar 

  44. Michie AM, Nakagawa R. Elucidating the role of protein kinase C in chronic lymphocytic leukaemia. Hematol Oncol. 2006;24:134–8.

    Article  CAS  PubMed  Google Scholar 

  45. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33:407–20.

    Article  CAS  PubMed  Google Scholar 

  46. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol. 2006;8:77–82.

    Article  CAS  PubMed  Google Scholar 

  47. Gollob JA, Wilhelm S, Carter C, Kelley SL. Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 2006;33:392–406.

    Article  CAS  PubMed  Google Scholar 

  48. Serova M, Ghoul A, Benhadji KA, et al. Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol. 2006;33:466–78.

    Article  CAS  PubMed  Google Scholar 

  49. Chu XJ, DePinto W, Bartkovitz D, et al. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity. J Med Chem. 2006;49:6549–60.

    Article  CAS  PubMed  Google Scholar 

  50. Krystof V, Cankar P, Frysova I, et al. 4-Arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem. 2006;49:6500–9.

    Article  CAS  PubMed  Google Scholar 

  51. Dassonville O, Bozec A, Fischel JL, Milano G. EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit Rev Oncol Hematol. 2007;62:53–61.

    Article  PubMed  Google Scholar 

  52. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 2007;25:587–95.

    Article  CAS  PubMed  Google Scholar 

  53. Heaney NB, Holyoake TL. Therapeutic targets in chronic myeloid leukaemia. Hematol Oncol. 2007;25:66–75.

    Article  CAS  PubMed  Google Scholar 

  54. Moen MD, McKeage K, Plosker GL, Siddiqui MA. Imatinib: a review of its use in chronic myeloid leukaemia. Drugs. 2007;67:299–320.

    Article  CAS  PubMed  Google Scholar 

  55. de Carcer G, de Castro IP, Malumbres M. Targeting cell cycle kinases for cancer therapy. Curr Med Chem. 2007;14:969–85.

    Article  PubMed  Google Scholar 

  56. Abrams ST, Lakum T, Lin K, et al. B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CbetaII. Blood. 2007;109:1193–201.

    Article  CAS  PubMed  Google Scholar 

  57. Berg T, Cohen SB, Desharnais J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99:3830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol. 2003;10:759–67.

    Article  CAS  PubMed  Google Scholar 

  59. Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett. 2003;197:125–30.

    Article  CAS  PubMed  Google Scholar 

  60. Nikolovska-Coleska Z, Xu L, Hu Z, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 2004;47:2430–40.

    Article  CAS  PubMed  Google Scholar 

  61. Wang G, Nikolovska-Coleska Z, Yang CY, et al. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J Med Chem. 2006;49:6139–42.

    Article  CAS  PubMed  Google Scholar 

  62. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets. 2004;8:409–22.

    Article  CAS  PubMed  Google Scholar 

  63. Yu H, Jove R. The STATS of cancer-new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.

    Article  CAS  PubMed  Google Scholar 

  64. Turkson J, Zhang S, Palmer J, et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent anti-tumor activity. Mol Cancer Ther. 2004;3:1533–42.

    CAS  PubMed  Google Scholar 

  65. Turkson J, Zhang S, Mora LB, et al. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem. 2005;280:32979–88.

    Article  CAS  PubMed  Google Scholar 

  66. Turkson J, Ryan D, Kim JS, et al. Phosphotyrosyl peptides block Stat3-mediated DNA-binding activity, gene regulation and cell transformation. J Biol Chem. 2001;276:45443–55.

    Article  CAS  PubMed  Google Scholar 

  67. Turkson J, Kim JS, Zhang S, et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther. 2004;3:261–9.

    CAS  PubMed  Google Scholar 

  68. Song H, Wang R, Wang S, Lin J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A. 2005;102:4700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manion MK, Fry J, Schwartz PS, Hockenbery DM. Small-molecule inhibitors of Bcl-2. Curr Opin Investig Drugs. 2006;7:1077–84.

    CAS  PubMed  Google Scholar 

  70. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–42.

    Article  CAS  PubMed  Google Scholar 

  71. Murray JK, Gellman SH. Targeting protein-protein interactions: Lessons from p53/MDM2. Biopolymers. 2007;10:10.

    Google Scholar 

  72. Dudkina AS, Lindsley CW. Small molecule protein-protein inhibitors for the p53-MDM2 interaction. Curr Top Med Chem. 2007;7:955–63.

    Article  Google Scholar 

  73. Stauffer SR. Small molecule inhibition of the Bcl-X(L)-BH3 protein-protein interaction: proof-of-concept of an in vivo chemopotentiator ABT-737. Curr Top Med Chem. 2007;7:965–9.

    Article  Google Scholar 

  74. Rajapakse HA. Small molecule inhibitors of the XIAP protein-protein interaction. Curr Top Med Chem. 2007;7:971–6.

    Article  Google Scholar 

  75. Nieddu E, Pasa S. Interfering with protein-protein contact: molecular interaction maps and peptide modulators. Curr Top Med Chem. 2007;7:21–32.

    Article  CAS  PubMed  Google Scholar 

  76. Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A. 2007;104:7391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dourlat J, Valentin B, Liu WQ, Garbay C. New syntheses of tetrazolylmethylphenylalanine and O-malonyltyrosine as pTyr mimetics for the design of STAT3 dimerization inhibitors. Bioorg Med Chem Lett. 2007;3:3.

    Google Scholar 

  78. Cho LC, Choy H. Topoisomerase I inhibitors in the combined-modality therapy of lung cancer. Oncology. 2004;18:29–39.

    PubMed  Google Scholar 

  79. Pommier Y, Marchand C. Interfacial inhibitors of protein-nucleic acid interactions. Curr Med Chem Anticancer Agents. 2005;5:421–9.

    Article  CAS  PubMed  Google Scholar 

  80. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6:789–802.

    Article  CAS  PubMed  Google Scholar 

  81. Gruber BM, Anuszewska EL, Roman I, et al. Topoisomerase II alpha expression and cytotoxicity of anthracyclines in human neoplastic cells. Acta Pol Pharm. 2006;63:15–8.

    CAS  PubMed  Google Scholar 

  82. Li QY, Zu YG, Shi RZ, Yao LP. Review camptothecin: current perspectives. Curr Med Chem. 2006;13:2021–39.

    Article  CAS  PubMed  Google Scholar 

  83. Randall-Whitis LM, Monk BJ. Topotecan in the management of cervical cancer. Expert Opin Pharmacother. 2007;8:227–36.

    Article  CAS  PubMed  Google Scholar 

  84. Dever TE. Gene-specific regulation by general translation factors. Cell. 2002;108:545–56.

    Article  CAS  PubMed  Google Scholar 

  85. Clardy J. Stopping trouble before it starts. ACS Chem Biol. 2006;1:17–9.

    Article  CAS  PubMed  Google Scholar 

  86. Moerke NJ, Aktas H, Chen H, et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell. 2007;128:257–67.

    Article  CAS  PubMed  Google Scholar 

  87. Poliseno L, Mercatanti A, Citti L, Rainaldi G. RNA-based drugs: from RNA interference to short interfering RNAs. Curr Pharm Biotechnol. 2004;5:361–8.

    Article  CAS  PubMed  Google Scholar 

  88. Dykxhoorn DM, Lieberman J. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng. 2006;17:17.

    Google Scholar 

  89. Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13:541–52.

    Article  CAS  PubMed  Google Scholar 

  90. Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy. J Cell Sci. 2007;120: 1833–40.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  92. Xiao J, Yang B, Lin H, et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol. 2007;212:285–92.

    Article  CAS  PubMed  Google Scholar 

  93. Jagannath A, Wood M. RNA interference based gene therapy for neurological disease. Brief Funct Genomic Proteomic. 2007;3:3.

    Google Scholar 

  94. Martin SE, Caplen NJ. Applications of RNA Interference in mammalian systems. Annu Rev Genomics Hum Genet. 2007;3:3.

    Google Scholar 

  95. Nakae K, Yoshimoto Y, Ueda M, et al. Migrastatin, a novel 14-membered lactone from Streptomyces sp. MK929-43F1. J Antibiot (Tokyo). 2000;53:1228–30.

    Article  CAS  Google Scholar 

  96. Nakae K, Yoshimoto Y, Sawa T, et al. Migrastatin, a new inhibitor of tumor cell migration from Streptomyces sp. MK929-43F1. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo). 2000;53:1130–6.

    Article  CAS  Google Scholar 

  97. Sehgal A. Anticancer drug discovery using chemical genomics. Curr Med Chem. 2003;10:749–55.

    Article  CAS  PubMed  Google Scholar 

  98. Onyango P. The role of emerging genomics and proteomics technologies in cancer drug target discovery. Curr Cancer Drug Targets. 2004;4:111–24.

    Article  CAS  PubMed  Google Scholar 

  99. Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol. 2006;2:689–700.

    Article  CAS  PubMed  Google Scholar 

  100. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6:304–12.

    Article  CAS  PubMed  Google Scholar 

  101. Perez L, Danishefsky SJ. Chemistry and biology in search of antimetastatic agents. ACS Chem Biol. 2007;2:159–62.

    Article  CAS  PubMed  Google Scholar 

  102. Gangadhar NM, Stockwell BR. Chemical genetic approaches to probing cell death. Curr Opin Chem Biol. 2007;11:83–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Turkson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turkson, J. (2017). Cancer Drug Discovery and Anticancer Drug Development. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics