Skip to main content

Simple Sequence Mutations

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Almost 25 years ago a first attempt was made to decipher the various steps of colorectal tumor development. It led to the creation of a model of colorectal tumorigenesis in which the steps required for the development of cancer involve the mutational activation of an oncogene coupled with the loss of several tumor suppressor genes. This model relied on the mutational and gene expression analysis of known oncogenes and tumor suppressor genes. It was further completed with data from more recent techniques such as the Comparative Genomic Hybridization (CGH) and its latest developments the cDNA microarrays and the oligonucleotide microarray analysis (ROMA); cDNA microarrays and oligonucleotide microarrays used to analyze gene expression as well as the Serial Analysis of Gene Expression (SAGE), and the study of epigenetic changes that result in loss of gene expression that can be performed by various methods such as the Restriction Landmark Genomic Scanning (RLGS) or DNA bisulfite treatment. Recent progression models of breast, prostate, lung, and colorectal cancer have therefore been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  CAS  PubMed  Google Scholar 

  3. Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23:41–6.

    Article  CAS  PubMed  Google Scholar 

  4. Pollack JR, Sorlie T, Perou CM, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A. 2002;99:12963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13:2291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14:457–60.

    Article  CAS  PubMed  Google Scholar 

  7. Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 2002;30:e51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270:484–7.

    Article  CAS  PubMed  Google Scholar 

  9. Smiraglia DJ, Plass C. The development of CpG island methylation biomarkers using restriction landmark genomic scanning. Ann N Y Acad Sci. 2003;983:110–9.

    Article  CAS  PubMed  Google Scholar 

  10. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29:E65–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garnis C, Buys TP, Lam WL. Genetic alteration and gene expression modulation during cancer progression. Mol Cancer. 2004;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    Article  CAS  PubMed  Google Scholar 

  13. Davies H, Hunter C, Smith R, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65:7591–5.

    CAS  PubMed  Google Scholar 

  14. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23:23–35.

    Article  CAS  PubMed  Google Scholar 

  15. Chen FC, Vallender EJ, Wang H, Tzeng CS, Li WH. Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Hered. 2001;92:481–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lercher MJ, Williams EJ, Hurst LD. Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol Biol Evol. 2001;18:2032–9.

    Article  CAS  PubMed  Google Scholar 

  17. Smith NG, Webster MT, Ellegren H. Deterministic mutation rate variation in the human genome. Genome Res. 2002;12:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002;99:803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giannelli F, Anagnostopoulos T, Green PM. Mutation rates in humans: II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from hemophilia B. Am J Hum Genet. 1999;65:1580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Youssoufian H, Kazazian Jr HH, Phillips DG, et al. Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. Nature. 1986;324:380–2.

    Article  CAS  PubMed  Google Scholar 

  21. Youssoufian H, Antonarakis SE, Bell W, Griffin AM, Kazazian Jr HH. Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet. 1988;42:718–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet. 1998;63:474–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21:577–81.

    Article  CAS  PubMed  Google Scholar 

  24. Kunkel TA. The mutational specificity of DNA polymerases-alpha and -gamma during in vitro DNA synthesis. J Biol Chem. 1985;260:12866–74.

    CAS  PubMed  Google Scholar 

  25. Krawczak M, Cooper DN. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet. 1991;86:425–41.

    Article  CAS  PubMed  Google Scholar 

  26. Schmucker B, Krawczak M. Meiotic microdeletion breakpoints in the BRCA1 gene are significantly associated with symmetric DNA-sequence elements. Am J Hum Genet. 1997;61:1454–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beroud C, Joly D, Gallou C, et al. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Res. 1998;26:256–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beroud C, Soussi T. p53 and APC gene mutations: software and databases. Nucleic Acids Res. 1997;25:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamroun D, Kato S, Ishioka C, et al. The UMD TP53 database and website: Update and revisions. Hum Mutat. 2006;27:14–20.

    Article  CAS  PubMed  Google Scholar 

  30. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst). 2004;3:997–1007.

    Article  CAS  Google Scholar 

  31. Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol. 2004;5:792–804.

    Article  CAS  PubMed  Google Scholar 

  32. Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell. 2004;118:9–17.

    Article  CAS  PubMed  Google Scholar 

  33. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  34. Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13.

    Article  CAS  PubMed  Google Scholar 

  35. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–23.

    Article  CAS  PubMed  Google Scholar 

  36. Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 2006;31:402–10.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  38. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    Article  CAS  PubMed  Google Scholar 

  39. Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001;11:S27–31.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 2006;66:2881–4.

    Article  CAS  PubMed  Google Scholar 

  42. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.

    Article  CAS  PubMed  Google Scholar 

  43. Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436:642.

    Google Scholar 

  44. Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436:660–5.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson 3rd DM, Bohr VA. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst). 2007;6:544–59.

    Article  CAS  Google Scholar 

  46. Krokan HE, Drablos F, Slupphaug G. Uracil in DNA—occurrence, consequences and repair. Oncogene. 2002;21:8935–48.

    Article  CAS  PubMed  Google Scholar 

  47. Bellamy SR, Baldwin GS. A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1. Nucleic Acids Res. 2001;29:3857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76.

    Article  CAS  PubMed  Google Scholar 

  49. Hazra TK, Hill JW, Izumi T, Mitra S. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol. 2001;68:193–205.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene. 2005;24:5931–7.

    Article  CAS  PubMed  Google Scholar 

  51. Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323:643–6.

    Article  CAS  PubMed  Google Scholar 

  52. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258–61.

    Article  CAS  PubMed  Google Scholar 

  53. Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263:1625–9.

    Article  CAS  PubMed  Google Scholar 

  54. Hammiche A, Walsh MJ, Pollock HM, Martin-Hirsch PL, Martin FL. Non-contact micro-cantilevers detect photothermally induced vibrations that can segregate different categories of exfoliative cervical cytology. J Biochem Biophys Methods. 2007;70:675–7.

    Article  CAS  PubMed  Google Scholar 

  55. Martin FL. Complex mixtures that may contain mutagenic and/or genotoxic components: a need to assess in vivo target-site effect(s) associated with in-vitro-positive(s). Chemosphere. 2007;69:841–8.

    Article  CAS  PubMed  Google Scholar 

  56. Feng Z, Hu W, Rom WN, Costa M, Tang MS. Chromium(VI) exposure enhances polycyclic aromatic hydrocarbon-DNA binding at the p53 gene in human lung cells. Carcinogenesis. 2003;24:771–8.

    Article  CAS  PubMed  Google Scholar 

  57. Voitkun V, Zhitkovich A, Costa M. Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res. 1998;26:2024–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274:430–2.

    Article  CAS  PubMed  Google Scholar 

  59. Smith LE, Denissenko MF, Bennett WP, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 2000;92:803–11.

    Article  CAS  PubMed  Google Scholar 

  60. Arakawa H, Wu F, Costa M, Rom W, Tang MS. Sequence specificity of Cr(III)-DNA adduct formation in the p53 gene: NGG sequences are preferential adduct-forming sites. Carcinogenesis. 2006;27:639–45.

    Article  CAS  PubMed  Google Scholar 

  61. Abramowicz M. The Human Genome Project in retrospect. Adv Genet. 2003;50:231–61.

    Google Scholar 

  62. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    Article  CAS  PubMed  Google Scholar 

  63. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14:1675–80.

    Article  CAS  PubMed  Google Scholar 

  64. Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science. 1996;274:610–4.

    Article  CAS  PubMed  Google Scholar 

  65. Fodor SP, Read JL, Pirrung MC, et al. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251:767–73.

    Article  CAS  PubMed  Google Scholar 

  66. Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet. 2005;37(Suppl):S31–7.

    Article  CAS  PubMed  Google Scholar 

  67. Miller LD, Long PM, Wong L, et al. Optimal gene expression analysis by microarrays. Cancer Cell. 2002;2:353–61.

    Article  CAS  PubMed  Google Scholar 

  68. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7:55–65.

    Article  CAS  PubMed  Google Scholar 

  69. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  70. Michiels S, Koscielny S, Hill C. Interpretation of microarray data in cancer. Br J Cancer. 2007;96:1155–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eden P, Ritz C, Rose C, Ferno M, Peterson C. “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer. 2004;40:1837–41.

    Article  CAS  PubMed  Google Scholar 

  72. Dunkler D, Michiels S, Schemper M. Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis? Eur J Cancer. 2007;43:745–51.

    Article  CAS  PubMed  Google Scholar 

  73. Eszlinger M, Krohn K, Kukulska A, Jarzab B, Paschke R. Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr Rev. 2007;28:322–38.

    Article  CAS  PubMed  Google Scholar 

  74. Dupuy A, Simon RM. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst. 2007;99:147–57.

    Article  PubMed  Google Scholar 

  75. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431:525–6.

    Article  CAS  PubMed  Google Scholar 

  76. Stephens P, Edkins S, Davies H, et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet. 2005;37:590–2.

    Article  CAS  PubMed  Google Scholar 

  77. Collier LS, Largaespada DA. Transforming science: cancer gene identification. Curr Opin Genet Dev. 2006;16:23–9.

    Article  CAS  PubMed  Google Scholar 

  78. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang Z, Ro S, Rannala B. Likelihood models of somatic mutation and codon substitution in cancer genes. Genetics. 2003;165:695–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics. 2006;173:2187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3:285–98.

    Article  CAS  PubMed  Google Scholar 

  82. Claustres M, Horaitis O, Vanevski M, Cotton RG. Time for a unified system of mutation description and reporting: a review of locus-specific mutation databases. Genome Res. 2002;12:680–8.

    Article  CAS  PubMed  Google Scholar 

  83. Beroud C, Collod-Beroud G, Boileau C, Soussi T, Junien C. UMD (Universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mutat. 2000;15:86–94.

    Article  CAS  PubMed  Google Scholar 

  84. Beroud C, Hamroun D, Collod-Beroud G, et al. UMD (Universal Mutation Database): 2005 update. Hum Mutat. 2005;26:184–91.

    Article  CAS  PubMed  Google Scholar 

  85. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  86. Fuller GN, Rhee CH, Hess KR, et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res. 1999;59:4228–32.

    CAS  PubMed  Google Scholar 

  87. Wang H, Wang H, Zhang W, Fuller GN. Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol. 2002;12:95–107.

    Article  PubMed  Google Scholar 

  88. Dunlap SM, Celestino J, Wang H, et al. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci U S A. 2007;104:11736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holland EC, Celestino J, Dai C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.

    Article  CAS  PubMed  Google Scholar 

  90. Dai C, Lyustikman Y, Shih A, et al. The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia. 2005;7:397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

    Article  CAS  PubMed  Google Scholar 

  92. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  93. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Béroud Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Béroud, C. (2017). Simple Sequence Mutations. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics