Skip to main content

Pimonidazole Adduct Immunohistochemistry in the Rat Kidney: Detection of Tissue Hypoxia

  • Protocol
  • First Online:
Kidney Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 466))

Abstract

Immunohistochemistry for pimonidazole adducts serves to define hypoxia within tissues. For this purpose, pimonidazole is delivered in vivo, binds to thiol groups at oxygen tensions below 10 mmHg, and is visualized with help of commercially available anti-pimonidazole antibodies. Renal parenchymal oxygen distribution is highly variable under normal conditions and during acute renal failure and chronic renal disorders. Pimonidazole immunostaining clearly helps in delineating hypoxic regions within the kidneys, but technical pitfalls should be taken into account. In particular, tissue fixation by in vivo perfusion is strongly recommended in order to eliminate artificial staining, because immersion fixation per se can promote a hypoxic environment within kidney tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franko, Chapman, J.D. (1982) Binding of 14C-misonidazole to hypoxic cells in V79 spheroids. Br. J. Cancer 45, 694–699.

    Article  PubMed  CAS  Google Scholar 

  2. Raleigh, J.A., Franko, A.J., Koch, C.J., Born, J.L. (1985) Binding of misonidazole to hypoxic cells in monolayer and spheroid culture. Br. J. Cancer 51, 229–235.

    Article  PubMed  CAS  Google Scholar 

  3. Arteel, G.E., Thurman, R.G., Yates, J.M., Raleigh, J.A. (1995) Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889–895.

    Article  PubMed  CAS  Google Scholar 

  4. Kennedy, A.S., Raleigh, J.A., Perez, G.M., Calkins, D.P., Thrall, D.E., Novotny, D.B., Varia, M.A. (1997) Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int. J. Radiat. Oncol. Biol. Phy. 37, 897–905.

    Article  CAS  Google Scholar 

  5. Jankovic, B., Aquino-Parsons, C., Raleigh, J.A., Stanbridge, E.J., Durand, R.E., Banath, J.P., MacPhail, S.H., Olive, P.L. (2006) Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry Part B (Clinical Cytometry)70B,45–55.

    Article  CAS  Google Scholar 

  6. Leichtweiss, H.P., Lübbers, D.W., Weiß, C., Baumgärtl, H., Reschke, W. (1969) The oxygen supply of the rat kidney: measurements of intrarenal pO2. Pflügers Arch. 309(4),328–349.

    Article  PubMed  CAS  Google Scholar 

  7. Baumgärtl, H., Leichtweiss, H.P., Lübbers, D.W., Weiß, C., Hurland, H. (1972) The oxygen supply of the dog kidney: Measurements of intrarenal pO2. Microvasc. Res. 4, 247–257.

    Article  PubMed  Google Scholar 

  8. Günther, H., Aumüller, G., Kunke, S., Vaupel, P., Thews, G. (1974) The oxygen supply of the kidney. I. Distribution of O2 partial pressures in the rat kidney under normal conditions (author’s transl)]. Res. Exp. Med. (Berl). 163(3),251–264.

    Google Scholar 

  9. Schurek, H.J., Jost, U., Baumgärtl, H., Bertram, H., Heckmann, U. (1990) Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259(6 Pt 2),F910–915.

    PubMed  CAS  Google Scholar 

  10. Lübbers, D.W., Baumgärtl, H. (1997) Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int. 51(2),372–380.

    Article  PubMed  Google Scholar 

  11. Liss, P., Nygren, A., Erikson, U., Ulfendahl, H.R. (1997) Intrarenal oxygen tension measured by a modified clark electrode at normal and low blood pressure and after injection of x-ray contrast media. Pflügers Arch. 34(6),705–711.

    Article  Google Scholar 

  12. Welch, W.J., Baumgärtl, H., Lübbers, D., Wilcox, C.S. (2001) Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 59, 230–237.

    Article  PubMed  CAS  Google Scholar 

  13. Kriz, W. (1981) Structural organization of the renal medulla: comparative and functional aspects. Am. J. Physiol. 241, R3–R16.

    PubMed  CAS  Google Scholar 

  14. Brezis, M., Rosen, S. (1995) Hypoxia of the renal medullaÁits implications for disease. N. Engl. J. Med. 332(10),647–655.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberger, C., Heyman, S.N., Rosen, S., Shina, A., Goldfarb, M., Griethe, W., Frei, U., Reinke, P., Bachmann, S., Eckardt, K.U. (2005) Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia. Kidney Int. 67(2),531–542.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberger, C., Shina, A., Rosen, S., Goldfarb, M., Eckardt, K.U., Heyman, S.N. (2006) Hypoxia inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int. 70, 60–70.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberger, C., Griethe, W., Gruber, G., Wiesener, M.S., Frei, U., Bachmann, S., Eckardt, K.U. (2003) Cellular responses to hypoxia after renal segmental infarction. Kidney Int. 64(3),874–886.

    Article  PubMed  Google Scholar 

  18. Goldfarb, M., Rosenberger, C., Abassi, Z., Shina, A., Zilbersat, F., Eckardt, K.U., Rosen, S., Heyman, S.N. (2006) Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance. Am. J. Nephrol. 26, 22–33.

    Article  PubMed  Google Scholar 

  19. Zhong, Z., Arteel, G.E., Connor, H.D., Yin, M., Frankenberg, M.V., Stachlewitz R.F., Raleigh, J.A., Mason, R.P., Thurman, R.G. (1998) Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am. J. Physiol. Renal Physiol. 275, F595–F604.

    CAS  Google Scholar 

  20. Suga, S.I., Phillips, M.I., Ray, P.E., Raleigh, J.A., Vio, C.P., Kim, Y.G., Mazzali, M., Gordon, K.L., Hughes, J., Johnson, R.J. (2001) Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity. Am. J. Physiol. Renal. Physiol. 281, F620–F629.

    PubMed  CAS  Google Scholar 

  21. Yin, M., Zhong, Z., Connor, H.D., Bunzendahl, H., Finn, W.F., Rusyn, I., Li, X., Raleigh, J.A., Mason, R.P., Thurmann, R.G. (2003) Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo. Am. J. Physiol. Renal Physiol. 282, F417–F423.

    Google Scholar 

  22. Basile, D.P., Donohoe, D.L., Roethke, K., Mattson, D.L. (2003) Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Renal Physiol. 284, F338–F348.

    PubMed  CAS  Google Scholar 

  23. Matsumoto, M., Tanaka, T., Yamamoto, T., Noiri, E., Miyata, T., Inagi, R., Fujita, T., Nangaku, M. (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J. Am. Soc. Nephrol. 15, 1574–1581.

    Article  PubMed  Google Scholar 

  24. Manotham, K., Tanaka, T., Matsumoto, M., Ohse, T., Miyata, T., Inagi, R., Kurokawa, K., Fujita, T., Nangaku, M. (2004) Evidence of tubular hypoxia in the early phase in the remnant kidney model. J. Am. Soc. Nephrol. 15, 1277–1288.

    Article  PubMed  Google Scholar 

  25. Tanaka, T., Miyata, T., Inagi, R., Fujita, T., Nangaku, M. (2004) Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am. J. Pathol. 165(6),165:1979–1992.

    Article  PubMed  Google Scholar 

  26. Tanaka, T., Kojima, I., Ohse, T., Inagi, R., Miyata, T., Ingelfinger, J.R., Fujita, T., Nangaku, M. (2005) Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 289, 1123–1133.

    Article  Google Scholar 

  27. Wang, P.X., Sanders, P.W. (2005) Mechanism of hypertensive nephropathy in the Dahl/Rapp rat: a primary disorder of vascular smooth muscle. Am. J. Physiol. Renal Physiol. 288, F236–F242.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberger, C., Mandriota, S., Jürgensen, J., Wiesener, M.S., Hoerstrup, J.H., Frei, U., Ratcliffe, P.J., Maxwell, P.H., Bachmann, S., Eckardt, K.U. (2002) Expression of hypoxia inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 13(7),1721–32.

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberger, C., Rosen, S., Heyman, S. (2005) Current understanding of HIF in renal disease. Kidney Blood Pres. Res. 28, 32–350.

    Article  Google Scholar 

  30. Prasad, P.V., Epstein, F.H. (1999) Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int. 55, (1)294–8.

    Article  PubMed  CAS  Google Scholar 

  31. Prasad, P.V., Priatna, A., Spokes, K., Epstein, F.H. (2001) Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J. Magn. Reson. Imaging. 13, 744–7.

    Article  PubMed  CAS  Google Scholar 

  32. Samoszuk, M.K., Walter, J., Mechetner, E. (2004) Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J. Histochem. Cytochem. 52, (6)837–839.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Professor Sebastian Bachmann for advice in renal perfusion fixation and for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rosenberger, C., Rosen, S., Paliege, A., Heyman, S.N. (2009). Pimonidazole Adduct Immunohistochemistry in the Rat Kidney: Detection of Tissue Hypoxia. In: Becker, G., Hewitson, T. (eds) Kidney Research. Methods in Molecular Biology, vol 466. Humana Press. https://doi.org/10.1007/978-1-59745-352-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-352-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-945-1

  • Online ISBN: 978-1-59745-352-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics