Skip to main content

Quantification of Strigolactones

  • Protocol
  • First Online:
Plant and Food Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2083))

Abstract

Strigolactones (SLs) are a family of natural products produced by the plants as shoot branching factors and responsible for the induction of hyphal branching in arbuscular mycorrhizal (AM) fungi. They have been also used by parasitic plant seeds as stimulators of their germination as a strategy to ensure the presence of a host in the environment. For all these bioactivities, SLs have kept the attention of the researchers in the last years, increasing the number of published papers, and have opened new areas of research in the multiple roles that they play in the rhizosphere and as plant hormones. However, the low amount of them produced by plants and their rapid degradability make it crucial to develop fast analytical methods with very low limits of quantification. Herein, it is described a protocol for the development of an LC-MS/MS method for the quantification of SLs, using GR24 as IS, in roots exudates and extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Ráez JA, Charnikhova T, Gómez-Roldán V et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  Google Scholar 

  2. Delaux PM, Xie X, Timme RE et al (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    Article  CAS  Google Scholar 

  3. Siame B, Weerasuriya Y, Wood K et al (1993) Isolation of strigol, a germination stimulant for Striga asiatica. J Agric Food Chem 41:1486–1491

    Article  CAS  Google Scholar 

  4. Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host. A new dimension in allelochemistry. In: Inderjit KM, Dakshini M, Enhelling FA (eds) Allelopathy, organisms, processes and applications. American Chemical Society, Washington, DC, pp 158–166

    Google Scholar 

  5. Shen H, Ye W, Hong L et al (2006) Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 8:175–185

    Article  CAS  Google Scholar 

  6. Press MC, Scholes JD, Riches CR (2001) Current status and future prospects for management of parasitic weeds (Striga and Orobanche). World’s Worst Weeds Proc:71–88

    Google Scholar 

  7. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  Google Scholar 

  8. Hayashi H, Akiyama K (2008) Strigolactones: host recognition signals for arbuscular mycorrhizal fungi. New Phytol 2008:55–61

    Google Scholar 

  9. Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  Google Scholar 

  10. Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  Google Scholar 

  11. Screpanti C, Yoneyama K, Bouwmeester HJ (2016) Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. Pest Manag Sci 72:2013–2015

    Article  CAS  Google Scholar 

  12. Yoneyama K, Arakawa R, Ishimoto K et al (2015) Difference in striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206:983–989

    Article  CAS  Google Scholar 

  13. Sato D, Awad AA, Chae SH et al (2003) Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 51:1162–1168

    Article  CAS  Google Scholar 

  14. Sato D, A a A, Takeuchi Y et al (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102

    Article  CAS  Google Scholar 

  15. Yoneyama K, Xie X, Sekimoto H et al (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  CAS  Google Scholar 

  16. Yoneyama K, Yoneyama K, Takeuchi Y et al (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  Google Scholar 

  17. Jamil M, Charnikhova T, Cardoso C et al (2011) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51:373–385

    Article  CAS  Google Scholar 

  18. Boutet-Mercey S, Perreau F, Roux A et al (2018) Validated method for Strigolactone quantification by ultra high-performance liquid chromatography – electrospray ionisation tandem mass spectrometry using novel deuterium Labelled standards. Phytochem Anal 29:59–68

    Article  CAS  Google Scholar 

  19. Xie X, Yoneyama K, Kurita J et al (2009) 7-Oxoorobanchyl acetate and 7-Oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum). Biosci Biotechnol Biochem 73:1367–1370

    Article  CAS  Google Scholar 

  20. Xie X, Kusumoto D, Takeuchi Y et al (2007) 2′-Epi-orobanchol and Solanacol, two unique Strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    Article  CAS  Google Scholar 

  21. Yokota T, Sakai H, Okuno K et al (1998) Alectrol and Orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  22. Cook CE, Whichard LP, Turner B et al (1966) Germination of Witchweed (Striga Lutea Lour)—isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  Google Scholar 

  23. Cook C, Whichard L, Wall M et al (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  24. Xie X, Yoneyama K, Harada Y et al (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215

    Article  CAS  Google Scholar 

  25. Xie X, Yoneyama K, Kusumoto D et al (2008) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69:427–431

    Article  CAS  Google Scholar 

  26. Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    Article  CAS  Google Scholar 

  27. Rial C, Varela RM, Molinillo JMG et al (2019) A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal 30:110–116

    Article  CAS  Google Scholar 

  28. ICH (2005) ICH Topic Q2 (R1) Validation of analytical procedures: text and methodology, Geneva

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministerio de Economía, Industria y Competitividad (MINEICO) (Project AGL2017-88-083-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rial, C., Varela, R.M., Molinillo, J.M.G., Durán, A.G., Macías, F.A. (2020). Quantification of Strigolactones. In: Rodríguez-Concepción, M., Welsch, R. (eds) Plant and Food Carotenoids. Methods in Molecular Biology, vol 2083. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9952-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9952-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9951-4

  • Online ISBN: 978-1-4939-9952-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics