Skip to main content

Guide to Transcranial Imaging of Sound-Evoked Activity in the Auditory Cortex of GCaMP6s Mice In Vivo

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

Transcranial in vivo imaging of rodent cortical activity during sensory events is a fast, minimally invasive and reliable way to measure the nature and location of neuronal responses, allowing the creation of topographic maps and assessment of how the maps change over different time scales. In this chapter, we describe a straightforward and robust method of transcranial in vivo imaging of auditory cortical responses after sound stimulation in C57BL6J GCaMP6s transgenic mice. We aim to describe to the reader some theoretical background of this imaging method and, most importantly, practical guidelines on how to apply it in their own laboratory setting, including the necessary equipment along with common qualitative and quantitative methods of analysis. Although this chapter specifically focuses on the use of C57BL6J-Tg(Thy1-GCaMP6s)GP4.3 transgenic mouse line in auditory research, the method can be further modified for visual, motor, and somatosensory research, as well as the areas of clinical and translational neuroscience for studying mouse models of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14(1):39–57

    Article  CAS  PubMed  Google Scholar 

  2. Enquist M, Ghirlanda S (2013) Neural networks and animal behavior. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  3. Hogan JA (2015) A framework for the study of behavior. Behav Processes 117:105–113. https://doi.org/10.1016/j.beproc.2014.05.003

    Article  PubMed  Google Scholar 

  4. Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85(15):3221–3232

    Article  CAS  PubMed  Google Scholar 

  5. Husson TR, Mallik AK, Zhang JX, Issa NP (2007) Functional imaging of primary visual cortex using flavoprotein autofluorescence. J Neurosci 27(32):8665–8675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bandyopadhyay S, Shamma SA, Kanold PO (2010) Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13(3):361–368. https://doi.org/10.1038/nn.2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lippert MT, Takagaki K, Xu W, Huang X, Wu JY (2007) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 98(1):502–512. https://doi.org/10.1152/jn.01169.2006

    Article  PubMed  Google Scholar 

  8. Masino S, Kwon M, Dory Y, Frostig R (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci U S A 90(21):9998–10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38(4):529–545

    Article  CAS  PubMed  Google Scholar 

  10. Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109(Suppl 1):3–9. https://doi.org/10.1111/j.1471-4159.2009.05926.x

    Article  CAS  PubMed  Google Scholar 

  11. Hackett TA, Barkat TR, O’Brien BM, Hensch TK, Polley DB (2011) Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 31(8):2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanold PO, Nelken I, Polley DB (2014) Local versus global scales of organization in auditory cortex. Trends Neurosci 37(9):502–510. https://doi.org/10.1016/j.tins.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28(15):3988–3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502(3):339–357

    Article  PubMed  Google Scholar 

  15. Kaas JH, Nelson RJ, Sur M, Lin C-S, Merzenich MM (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204(4392):521–523

    Article  CAS  PubMed  Google Scholar 

  16. Krubitzer L, Sesma M, Kaas J (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J Comp Neurol 250(4):403–430

    Article  CAS  PubMed  Google Scholar 

  17. Merzenich MM, Kaas JH, Roth GL (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J Comp Neurol 166(4):387–401

    Article  CAS  PubMed  Google Scholar 

  18. Hellweg FC, Koch R, Vollrath M (1977) Representation of the cochlea in the neocortex of guinea pigs. Exp Brain Res 29(3):467–474. https://doi.org/10.1007/bf00236184

    Article  CAS  PubMed  Google Scholar 

  19. Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38(2):231–249

    Article  CAS  PubMed  Google Scholar 

  20. Suga N, Jen P (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194(4264):542–544

    Article  CAS  PubMed  Google Scholar 

  21. Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318(1):27–63. https://doi.org/10.1002/cne.903180104

    Article  CAS  PubMed  Google Scholar 

  22. Frostig RD (2009) In vivo optical imaging of brain function. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  23. Turley J, Zalewska K, Nilsson M, Walker F, Johnson S (2017) An analysis of signal processing algorithm performance for cortical intrinsic optical signal imaging and strategies for algorithm selection. Sci Rep 7:7198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubota Y, Kamatani D, Tsukano H, Ohshima S, Takahashi K, Hishida R, Kudoh M, Takahashi S, Shibuki K (2008) Transcranial photo-inactivation of neural activities in the mouse auditory cortex. Neurosci Res 60(4):422–430. https://doi.org/10.1016/j.neures.2007.12.013

    Article  PubMed  Google Scholar 

  25. Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102(39):14063–14068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5(7):e189

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69(1):9–21. https://doi.org/10.1016/j.neuron.2010.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rickgauer JP, Deisseroth K, Tank DW (2014) Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat Neurosci 17(12):1816–1824. https://doi.org/10.1038/nn.3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT (2014) Multiscale optical Ca 2+ imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840. https://doi.org/10.1523/JNEUROSCI.2601-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333(6051):1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22(1):18–23. https://doi.org/10.1016/j.conb.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  33. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7(5):399–405

    Article  CAS  PubMed  Google Scholar 

  34. Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GECIs. Front Mol Neurosci 7:88. https://doi.org/10.3389/fnmol.2014.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Q, Cichon J, Wang W, Qiu L, Lee SJ, Campbell NR, Destefino N, Goard MJ, Fu Z, Yasuda R, Looger LL, Arenkiel BR, Gan WB, Feng G (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76(2):297–308. https://doi.org/10.1016/j.neuron.2012.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. https://doi.org/10.1016/j.neuron.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  37. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dana H, Chen T-W, Hu A, Shields BC, Guo C, Looger LL, Kim DS, Svoboda K (2014) Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 9(9):e108697

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36(2):127–137

    Article  CAS  PubMed  Google Scholar 

  40. Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97(5):3621–3638. https://doi.org/10.1152/jn.01298.2006

    Article  PubMed  Google Scholar 

  41. Joachimsthaler B, Uhlmann M, Miller F, Ehret G, Kurt S (2014) Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus). Eur J Neurosci 39(6):904–918. https://doi.org/10.1111/ejn.12478

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by research grant DC013073 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Llano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yudintsev, G., Lee, C.M., Asilador, A.R., Llano, D.A. (2020). Guide to Transcranial Imaging of Sound-Evoked Activity in the Auditory Cortex of GCaMP6s Mice In Vivo. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics