Skip to main content

In Vivo Tracking of Tumor-Derived Bioluminescent Extracellular Vesicles in Mice

  • Protocol
  • First Online:
Bioluminescent Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2081))

Abstract

Extracellular vesicles (EVs) are nano-membrane vesicles containing exosomes and microvesicles, and are released by almost all types of cells. They can carry lipids, proteins, mRNAs, and miRNAs to enable intercellular communication between cells either locally or distantly without direct cell-to-cell contact. Cancer-derived EVs are known to facilitate tumor progression and metastasis by preparing premetastatic niches. Here, we define a strategy to label cancer derived EVs with Renilla luciferase for noninvasive bioluminescence imaging (BLI) and monitoring of intravenously administered EVs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gangadaran P, Hong CM, Ahn B-C (2018) An update on in vivo imaging of extracellular vesicles as drug delivery vehicles. Front Pharmacol 9:169. https://doi.org/10.3389/fphar.2018.00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gangadaran P, Rajendran RL, Lee HW et al (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release Off J Control Release Soc 264:112–126. https://doi.org/10.1016/j.jconrel.2017.08.022

    Article  CAS  Google Scholar 

  3. Gangadaran P, Hong CM, Ahn B-C (2017) Current perspectives on in vivo noninvasive tracking of extracellular vesicles with molecular imaging. Biomed Res Int 2017:9158319. https://doi.org/10.1155/2017/9158319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu L, Oh JM, Gangadaran P et al (2018) Targeting and therapy of glioblastoma in a mouse model using exosomes derived from natural killer cells. Front Immunol 9:824. https://doi.org/10.3389/fimmu.2018.00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu L, Gangadaran P, Kalimuthu S et al (2018) Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. Artif Cells Nanomedicine Biotechnol 46:S166–S179. https://doi.org/10.1080/21691401.2018.1489824

    Article  CAS  Google Scholar 

  6. Redzic JS, Kendrick AA, Bahmed K et al (2013) Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN. PLoS One 8:e71225. https://doi.org/10.1371/journal.pone.0071225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gangadaran P, Li XJ, Lee HW et al (2017) A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget 109894–109914:8. https://doi.org/10.18632/oncotarget.22493

    Article  Google Scholar 

  8. Blackwell RH, Foreman KE, Gupta GN (2017) The role of cancer-derived exosomes in tumorigenicity & epithelial-to-mesenchymal transition Cancers:9, pii: E105. https://doi.org/10.3390/cancers9080105

  9. Gangadaran P, Ahn B-C (2017) Molecular imaging: A useful tool for the development of natural killer cell-based immunotherapies. Front Immunol 8:1090. https://doi.org/10.3389/fimmu.2017.01090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442

    Article  CAS  Google Scholar 

  11. Hori K, Wampler JE, Matthews JC, Cormier MJ (1973) Identification of the product excited states during the chemiluminescent and bioluminescent oxidation of Renilla (sea pansy) luciferin and certain of its analogs. Biochemistry 12:4463–4468

    Article  CAS  Google Scholar 

  12. Matthews JC, Hori K, Cormier MJ (1977) Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry 16:5217–5220

    Article  CAS  Google Scholar 

  13. Matthews JC, Hori K, Cormier MJ (1977) Purification and properties of Renilla reniformis luciferase. Biochemistry 16:85–91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Cheol Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gangadaran, P., Ahn, BC. (2020). In Vivo Tracking of Tumor-Derived Bioluminescent Extracellular Vesicles in Mice. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics