Skip to main content

Intravenous Hypnotic Agents: From Binding Sites to Loss of Consciousness

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

Abstract

All the intravenous hypnotic drugs important for clinical anesthesiology reversibly unsettle functional brain networks, in order to undermine the information transfer on which consciousness depends. Three classes of intravenous hypnotic drugs are the most used nowadays: the carboxylated imidazole derivate propofol, the short-acting benzodiazepine midazolam, and the barbiturates, which show action on GABAA Receptors, potentiating gamma-aminobutyric acid (GABA) action. The dissociative agent ketamine, instead, mainly exerts its effects by reversibly blocking the activity of N-methyl-d-aspartate receptors while the most recent dexmedetomidine is an alpha-2 adrenergic receptor agonist. Nevertheless, other receptors are also involved in anesthesia determining, that is voltage-gated and ligand-gated ion channels and it is probable that each intravenous hypnotic agent alters neuronal activity acting at different levels and at multiple sites in a way not yet entirely clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mashour GA (2017) Network inefficiency: a Rosetta Stone for the mechanism of anesthetic-induced unconsciousness. Anesthesiology 126(3):366–368

    Article  Google Scholar 

  2. Monti MM, Lutkenhoff ES, Rubinov M et al (2013) Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol 9(10):e1003271. https://doi.org/10.1371/journal.pcbi.1003271

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shin DJ, Germann AL, Johnson AD, Forman SA, Steinbach JH, Akk G (2018) Propofol is an allosteric agonist with multiple binding sites on concatemeric ternary GABAA receptors. Mol Pharmacol 93(2):178–189

    Article  CAS  Google Scholar 

  4. Yevenes GE, Zeilhofer HU (2011) Allosteric modulation of glycine receptors. Br J Pharmacol 164(2):224–236

    Article  CAS  Google Scholar 

  5. Li L, Vlisides PE (2016) Ketamine: 50 years of modulating the mind. Front Hum Neurosci 10:612

    PubMed  PubMed Central  Google Scholar 

  6. Jayakar SS, Dailey WP, Eckenhoff RG, Cohen JB (2013) Identification of propofol binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog. J Biol Chem 288(9):6178–6189

    Article  CAS  Google Scholar 

  7. Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C (2014) Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 21(6):953–970

    Article  CAS  Google Scholar 

  8. Hamilton C, Ma Y, Zhang N (2017) Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct Funct 222(7):3205–3216

    Article  Google Scholar 

  9. Bhattacharya AA, Curry S, Franks NP (2000) Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J Biol Chem 275(49):38731–38738

    Article  CAS  Google Scholar 

  10. (1994) Receptor and ion channel nomenclature. Trends Pharmacol Sci (Suppl):1–51

    Google Scholar 

  11. Nourmahnad A, Stern AT, Hotta M et al (2016) Tryptophan and cysteine mutations in M1 helices of α1β3γ2L γ-aminobutyric acid type a receptors indicate distinct intersubunit sites for four intravenous anesthetics and one orphan site. Anesthesiology 125(6):1144–1158

    Article  CAS  Google Scholar 

  12. Bertaccini EJ, Shapiro J, Brutlag DL et al (2005) Homology modeling of a human glycine alpha 1 receptor reveals a plausible anesthetic binding site. J Chem Inf Model 45(1):128–135

    Article  CAS  Google Scholar 

  13. Bertaccini EJ, Wallner B, Trudell JR et al (2010) Modeling anesthetic binding sites within the glycine alpha one receptor based on prokaryotic ion channel templates: the problem with TM4. J Chem Inf Model 50(12):2248–2255

    Article  CAS  Google Scholar 

  14. Fahrenbach VS, Bertaccini EJ (2018) Insights into receptor-based anesthetic pharmacophores and anesthetic-protein interactions. Methods Enzymol 602:77–95

    Article  CAS  Google Scholar 

  15. Sandorfy C (2004) Weak intermolecular associations and anesthesia. Anesthesiology 101(5):1225–1227

    Article  Google Scholar 

  16. Koblin DD, Chortkoff BS, Laster MJ et al (1994) Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg 79(6):1043–1048

    Article  CAS  Google Scholar 

  17. Trudell JR, Bertaccini E (2002) Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 89(1):32–40

    Article  CAS  Google Scholar 

  18. Jayakar SS, Zhou X, Chiara DC et al (2014) Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. J Biol Chem 289(40):27456–27468

    Article  CAS  Google Scholar 

  19. Yip GM, Chen ZW, Edge CJ (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9(11):715–720

    Article  CAS  Google Scholar 

  20. Chiara DC, Jounaidi Y, Zhou X (2016) General anesthetic binding sites in human α4β3δ γ-aminobutyric acid type a receptors (GABAARs). J Biol Chem 291(51):26529–26539

    Article  CAS  Google Scholar 

  21. Yamakura T, Bertaccini E, Trudell JR et al (2001) Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 41:23–51

    Article  CAS  Google Scholar 

  22. Shin DJ, Germann AL, Johnson AD et al (2018) Propofol is an allosteric agonist with multiple binding sites on concatemeric ternary GABAA receptors. Mol Pharmacol 93(2):178–189

    Article  CAS  Google Scholar 

  23. Jayakar SS, Dailey WP, Eckenhoff RG et al (2013) Identification of propofol binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog. J Biol Chem 288(9):6178–6189

    Article  CAS  Google Scholar 

  24. Tang P, Eckenhoff R (2018) Recent progress on the molecular pharmacology of propofol. F1000Res 7:123

    Article  Google Scholar 

  25. Bensel BM, Guzik-Lendrum S, Masucci EM et al (2017) Common general anesthetic propofol impairs kinesin processivity. Proc Natl Acad Sci U S A 114(21):E4281–E4287

    Article  CAS  Google Scholar 

  26. Mion G (2017) History of anaesthesia: The ketamine story - past, present and future. Eur J Anaesthesiol 34(9):571–575

    Article  Google Scholar 

  27. Zhou C, Douglas JE, Kumar NN et al (2013) Forebrain HCN1 channels contribute to hypnotic actions of ketamine. Anesthesiology 118(4):785–795

    Article  CAS  Google Scholar 

  28. Oakley S, Vedula LS, Bu W et al (2012) Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis. PLoS One 7(2):e32070. https://doi.org/10.1371/journal.pone.0032070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayashi Y, Maze M (1993) Alpha 2 adrenoceptor agonists and anaesthesia. Br J Anaesth 71(1):108–118

    Article  CAS  Google Scholar 

  30. Nacif-Coelho C, Correa-Sales C, Chang LL et al (1994) Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology 81(6):1527–1534

    Article  CAS  Google Scholar 

  31. Wang DS, Kaneshwaran K, Lei G et al (2018) Dexmedetomidine prevents excessive γ-aminobutyric acid type a receptor function after anesthesia. Anesthesiology 129(3):477–489

    Article  CAS  Google Scholar 

  32. Hashmi JA, Loggia ML, Khan S et al (2017) Dexmedetomidine disrupts the local and global efficiencies of large-scale brain networks. Anesthesiology 126(3):419–430

    Article  CAS  Google Scholar 

  33. Hudetz AG, Mashour GA (2016) Disconnecting consciousness: is there a common anesthetic end-point? Anesth Analg 123(5):1228–1240

    Article  Google Scholar 

  34. Bonhomme V, Vanhaudenhuyse A, Demertzi A et al (2016) Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125(5):873–888

    Article  Google Scholar 

  35. Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113(5):1038–1053

    Article  CAS  Google Scholar 

  36. Berlucchi G, Marzi CA (2019) Neuropsychology of consciousness: some history and a few new trends. Front Psychol 10:50. https://doi.org/10.3389/fpsyg.2019.00050

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pappas I, Adapa RM, Menon DK et al (2019) Brain network disintegration during sedation is mediated by the complexity of sparsely connected regions. NeuroImage 186:221–233

    Article  CAS  Google Scholar 

  38. Bayne T, Hohwy J, Owen AM (2016) Are there levels of consciousness? Trends Cogn Sci 20(6):405–413

    Article  Google Scholar 

  39. Sanders RD, Tononi G, Laureys S et al (2012) Unresponsiveness ≠ unconsciousness. Anesthesiology 116(4):946–959

    Article  Google Scholar 

  40. Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R et al (2010) Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 30(27):9095–9102

    Article  CAS  Google Scholar 

  41. Backman SB, Fiset P, Plourde G et al (2004) Cholinergic mechanisms mediating anesthetic induced altered states of consciousness. Prog Brain Res 145:197–206

    Article  CAS  Google Scholar 

  42. Sanders RD, Raz A, Banks MI, Boly M, Tononi G (2016) Is consciousness fragile? Br J Anaesth 116(1):1–3

    Article  CAS  Google Scholar 

  43. Meuret P, Backman SB, Bonhomme V et al (2000) Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 93(3):708–717

    Article  CAS  Google Scholar 

  44. Toscano A, Pancaro C, Peduto VA (2007) Scopolamine prevents dreams during general anesthesia. Anesthesiology 106(5):952–955

    Article  CAS  Google Scholar 

  45. Hugel S, Schlichter R (2000) Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20(6):2121–2130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baldassarre, D., Oliva, F., Piazza, O. (2020). Intravenous Hypnotic Agents: From Binding Sites to Loss of Consciousness. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics