Skip to main content

Mechanisms of Action of Inhaled Volatile General Anesthetics: Unconsciousness at the Molecular Level

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

Abstract

The mechanism by which general anesthetics prevent consciousness remains largely unknown because the mechanism by which brain physiology produces consciousness is yet unexplained. After its most evident goal, to allow surgery for million people in the world, the contribution of anesthesia to science is the unique and great opportunity to study consciousness.

General anesthetics drugs comprise inhaled volatile agents (e.g., isoflurane, sevoflurane, desflurane), and gases (nitrous oxide and xenon) as well as intravenous agents such as etomidate, propofol, thiopental, benzodiazepines, and ketamine. For the purposes of this chapter, because of the large number of compounds, we focus on the inhalational volatile anesthetics used in modern practice and on the fundamental question of how volatile halogenated anesthetics interact with their molecular target to produce unconsciousness.

Pieces of evidence suggest that volatile anesthetic agents do not shut down all brain activity, but they push the brain towards a distinct, highly specific and complex state. Interaction of general anesthetics with cytoskeletal microtubules, membrane and soluble protein are briefly summarized in this chapter. Nevertheless, notwithstanding considerable advances in our comprehension of the molecular properties of anesthetics, much remains to be studied about the deep and complex changes which occur at the level of neural structures during general anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  CAS  Google Scholar 

  2. Dwyer R, Bennett HL, Eger EI II et al (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77:888–898

    Article  CAS  Google Scholar 

  3. Ghoneim MM, Block RI (1997) Learning and memory during general anesthesia: an update. Anesthesiology 87:387–410

    Article  CAS  Google Scholar 

  4. Eger EI 2nd (2001) Age, minimum alveolar anesthetic concentration, and minimum alveolar anesthetic concentration-awake. Anesth Analg 93:947–953

    Article  CAS  Google Scholar 

  5. Roizen MF, Horrigan RW, Frazer BM (1981) Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision: MAC BAR. Anesthesiology 54:390–398

    Article  CAS  Google Scholar 

  6. Rampil IJ, Mason P, Singh H (1993) Anesthetic potency (MAC) is independent of forebrain structure in rats. Anesthesiology 78:707–712

    Article  CAS  Google Scholar 

  7. Caraiscos VB, Newell JG, You-Ten KE et al (2004) Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J Neurosci 24(39):8454–8458

    Article  CAS  Google Scholar 

  8. Alkire MT, Nathan SV (2002) Does the amygdala mediate anesthetic-induced amnesia? Basolateral amygdala lesions block sevoflurane-induced amnesia. Anesthesiology 102:754–760

    Article  Google Scholar 

  9. Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthesia-induced unconsciousness. Conscious Cogn 9:370–386

    Article  CAS  Google Scholar 

  10. John ER, Prichep LS (2005) The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology 102:447–471

    Article  Google Scholar 

  11. Bernard C (1875) Leçons sur les anesthésiques et sur l’asphyxie. Librairie J-B Baillière et Fils, Paris

    Google Scholar 

  12. Meyer HH (1901) Zur Theorie der Alkoholnarkose III. Der Einfluss wechselender Temperatur auf Wikungs-starke and Teilungs Koefficient der Nalkolicka. Arch Exp Pathol Pharmakol 154:338–346

    Article  Google Scholar 

  13. Overton CE (1901) Studien uber die narkose: zugleich ein beitrag zur allgemeinen pharmakologie. Gustav Fischer, Jena

    Google Scholar 

  14. Perouansky M (2015) The Overton in Meyer–Overton: a biographical sketch commemorating the 150th anniversary of Charles Ernest Overton’s birth. Br J Anaesth 114(4):537–541

    Article  CAS  Google Scholar 

  15. Harvey EN (1915) The effect of certain organic and inorganic substances upon light production by luminous bacteria. Biol Bull 29:308–311

    Article  CAS  Google Scholar 

  16. Ostergren G (1984) Colchicine mitosis, chromosome contraction, narcosis and protein chain folding. Hereditas 30:429–467

    Article  Google Scholar 

  17. Franks NP, Lieb WR (1984) Do general anaesthetics act by competitive binding to specific receptors? Nature 310:599–601

    Article  CAS  Google Scholar 

  18. Eckenhoff RG (2001) Promiscuous ligands and attractive cavities: how do the inhaled anesthetics work? Mol Interv 1(5):258–268

    CAS  PubMed  Google Scholar 

  19. Koblin DD, Chortkoff BS, Laster MJ et al (1994) Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg 79:1043–1048

    Article  CAS  Google Scholar 

  20. Fang ZX, Sonner J, Laster MJ et al (1996) Anesthetic and convulsant properties of aromatic compounds and cycloalkanes: implications for mechanisms of narcosis. Anesth Analg 83:1097–1104

    Article  CAS  Google Scholar 

  21. Hameroff SR (1998) Anesthesia, consciousness and hydrophobic pockets—a unitary quantum hypothesis of anesthetic action. Toxicol Lett 100-101:31–39

    Article  CAS  Google Scholar 

  22. Le Freche H, Brouillette J, Fernandez-Gomez FJ et al (2012) Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology 116:779–787

    Article  Google Scholar 

  23. Hameroff SR (2006) The entwined mysteries of anesthesia and consciousness. Is there a common underlying mechanism? Anesthesiology 105:400–412

    Article  Google Scholar 

  24. Raines DE (2000) Perturbation of lipid and protein structure by general anesthetics: how little is too little? Anesthesiology 92:1492–1494

    Article  CAS  Google Scholar 

  25. Hameroff SR, Watt RC (1983) Do anesthetics act by altering electron mobility? Anesth Analg 62(10):936–940

    Article  CAS  Google Scholar 

  26. Hameroff SR, Nip A, Porter M (2004) Conduction pathways in microtubules, biological quantum computation, and consciousness Stuart. Biosystems 64:149–168

    Article  Google Scholar 

  27. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  Google Scholar 

  28. Evers AS, Steinbach JH (1999) Double-edged swords: volatile anesthetics both enhance and inhibit ligand-gated ion channels. Anesthesiology 90:1–3

    Article  CAS  Google Scholar 

  29. Uhrig L, Dehaene S, Jarra B (2014) Cerebral mechanisms of general anesthesia. Ann Fr Anesth Reanim 33(2):72–78

    Article  CAS  Google Scholar 

  30. Sonner JM et al (2003) Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 97:718–740

    Article  CAS  Google Scholar 

  31. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  CAS  Google Scholar 

  32. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  CAS  Google Scholar 

  33. Bertaccini EJ, Dickinson R, Trudell JR et al (2014) Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem Neurosci 5:1246–1252

    Article  CAS  Google Scholar 

  34. Hemmings HC Jr et al (2005) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26(10):503–510

    Article  CAS  Google Scholar 

  35. Hemmings HC Jr (2009) Molecular Targets of General Anesthetics in the Nervous System. In: Hudetz A, Pearce R (eds) Suppressing the mind. Springer. Chapter 2

    Google Scholar 

  36. Nakahiro M, Yeh JZ, Brunner E et al (1989) General anesthetics modulate GABA receptor channel complex in rat dorsal root ganglion neurons. FASEB J 3:1850–1854

    Article  CAS  Google Scholar 

  37. De Sousa SL, Dickinson R, Lieb WR et al (2000) Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92:1055–1066

    Article  Google Scholar 

  38. Raines DE, Claycomb RJ, Scheller M et al (2001) Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology 95:470–477

    Article  CAS  Google Scholar 

  39. Goetz T, Arslan A, Wisden W et al (2007) GABAA receptors: structure and function in the basal ganglia. Prog Brain Res 160:21–41

    Article  CAS  Google Scholar 

  40. Hemmings HC Jr, Egan TD et al (2013) Chapter 1, Mechanisms of drug action. In: Proekt A, Hemmings HC Jr (eds) pharmacology and physiology for anesthesia: foundations and clinical application. Elsevier Health Science, Portland, OR

    Google Scholar 

  41. Harrison NL, Kugler JL, Jones MV et al (1993) Positive modulation of human GABAA and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol 44(3):628–632

    CAS  PubMed  Google Scholar 

  42. Downie DL, Hall AC, Lieb WR et al (1996) Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol 118:493–502

    Article  CAS  Google Scholar 

  43. Mascia MP, Machu TK, Harris RA (1996) Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Br J Pharmacol 119:1331–1336

    Article  CAS  Google Scholar 

  44. Stuart A, Formana B, David C et al (2015) Anesthetics target interfacial transmembrane sites in nicotinic acetylcholine receptors. Neuropharmacology 96(Pt B):169–177

    Google Scholar 

  45. Douglas E, Raines MD (1996) Anesthetic and nonanesthetic halogenated volatile compounds have dissimilar activities on nicotinic acetylcholine receptor desensitization kinetics. Anesthesiology 84:663–671

    Article  Google Scholar 

  46. Sobel A, Heidmann T, Changeux JP (1977) Purification of a protein binding quinacrine and histrionicotoxin from membrane fragments rich in cholinergic receptors in Torpedo marmorata. C R Acad Sci Hebd Seances Acad Sci D 285:1255–1258

    CAS  PubMed  Google Scholar 

  47. Miyazaki H, Nakamura Y, Arai T et al (1997) Increase of glutamate uptake in astrocytes a possible mechanism of action of volatile anesthetics. Anesthesiology 86:1359–1366

    Article  CAS  Google Scholar 

  48. Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81(4):1802–1809

    Article  CAS  Google Scholar 

  49. Sonner JM, Cantor RS (2013) Molecular mechanisms of drug action: an emerging view. Annu Rev Biophys 42:143–167

    Article  CAS  Google Scholar 

  50. Franks NP, Honoré E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25(11):601–608

    Article  CAS  Google Scholar 

  51. Patel AJ, Honoré E, Lesage F et al (1999) Inhalational anesthetics activate two-pore-domain background K + channels. Nat Neurosci 2:422–426

    Article  CAS  Google Scholar 

  52. Franks NP, Lieb WR (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333(6174):662–664

    Article  CAS  Google Scholar 

  53. Andres-Enguix CA, Yustos R et al (2007) Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis. J Biol Chem 282(29):20977–20990

    Article  CAS  Google Scholar 

  54. Schlame M, Hemmings HC Jr (1995) Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 82(6):1406–1416

    Article  CAS  Google Scholar 

  55. Westphalen RI, Hemmings HC Jr (2003) Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J Pharmacol Exp Ther 304(3):1188–1196

    Article  CAS  Google Scholar 

  56. Eckenhoff MF, Chan K, Eckenhoff RG (2002) Multiple specific binding targets for inhaled anesthetics in the mammalian brain. J Pharmacol Exp Ther 300:172–179

    Article  CAS  Google Scholar 

  57. Kaech S, Brinkhaus H, Matus A (1999) Volatile anesthetics block actin-based motility in dendritic spines. Proc Natl Acad Sci U S A 96:10433–10437

    Article  CAS  Google Scholar 

  58. Fütterer CD, Maurer MH, Schmitt A et al (2004) Alterations in rat brain proteins after desflurane. Anesthesiology 100:302–308

    Article  Google Scholar 

  59. Kalenka A, Hinkelbein J, Feldmann RE Jr et al (2007) The effects of sevoflurane anesthesia on rat brain proteins: a proteomic time-course analysis. Anesth Analg 104:1129–1135

    Article  CAS  Google Scholar 

  60. Franks NP, Lieb WR (1998) Which molecular targets are most relevant to general anaesthesia? Toxicol Lett 100–101:1–8

    Article  Google Scholar 

  61. Sugimura M, Kitayama S, Morita K et al (2002) Effects of GABAergic agents on anesthesia induced by halothane, isoflurane, and thiamylal in mice. Pharmacol Biochem Behav 72(1–2):111–116

    Article  CAS  Google Scholar 

  62. Xi J, Liu R, Asbury GR et al (2004) Inhalational anesthetic- binding proteins in rat neuronal membranes. J Biol Chem 279:19628–19633

    Article  CAS  Google Scholar 

  63. Hameroff S, Penrose R (2004) Consciousness in the universe: a review of the ‘OrchOR’ theory. Phys Life Rev 11:39–78

    Article  Google Scholar 

  64. Pan JZ, Xi J, Tobias JW, Eckenhoff MF et al (2007) Halothane binding proteome in human brain cortex. J Proteome Res 6(2):582–592

    Article  CAS  Google Scholar 

  65. Pan JZ, Xi J, Eckenhoff MF, Eckenhoff RG (2008) Inhaled anesthetics elicit region-specific changes in protein expression in mammalian brain. Proteomics 8(14):2983–2992. https://doi.org/10.1002/pmic.200800057

    Article  CAS  PubMed  Google Scholar 

  66. Eckenhoff RG, Planel E (2012) Postoperative cognitive decline: where art tau? Anesthesiology 116:751–752

    Article  Google Scholar 

  67. Craddock TJA, St. George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA (2012) Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS One 7(6):e37251. https://doi.org/10.1371/journal.pone.0037251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sánchez C, Dı́az-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP 2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168

    Article  Google Scholar 

  69. Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Rev Trends Neurosci 33(8):362–372

    Article  Google Scholar 

  70. Hameroff S, Nip A, Porter M et al (2002) Conduction pathways in microtubules, biological quantum computation and microtubules. Biosystems 64(13):149–168

    Article  Google Scholar 

  71. Hameroff SR, Watt RC, Borel JD et al (1982) General anesthetics directly inhibit electron mobility: dipole dispersion theory of anesthetic action. Physiol Chem Phys 14(3):183–187

    CAS  PubMed  Google Scholar 

  72. Hameroff S (1998) Anesthesia, consciousness and hydrophobic pockets – a unitary quantum hypothesis of anesthetic action. Toxicol Lett 100(101):31–39

    Article  Google Scholar 

  73. Hameroff S (2006) The entwined mysteries of anesthesia and consciousness. Anesthesiology 105:400–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baldassarre, D., Scarpati, G., Piazza, O. (2020). Mechanisms of Action of Inhaled Volatile General Anesthetics: Unconsciousness at the Molecular Level. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics