Skip to main content

Monitoring Cerebral Oximetry by Near-Infrared Spectroscopy (NIRS) in Anesthesia and Critical Care: Progress and Perspectives

  • Protocol
  • First Online:
General Anesthesia Research

Part of the book series: Neuromethods ((NM,volume 150))

Abstract

Noninvasive estimation of cerebral regional oxygen saturation (rScO2) by means of near-infrared spectroscopy (NIRS), first described more than 40 years ago, is currently commonly used as a cerebral and, more generally, hemodynamic monitoring tool in cardiovascular surgery and neonatal intensive care unit, and in recent years is spreading to other clinical settings in which brain injury and cognitive dysfunction are a major concern, such as interventional neuroradiology procedures, noncardiac surgery in the beach chair position or in high-risk (e.g., elderly) patients, cardiac arrest, and mechanical circulatory support. However, there is no agreement among clinicians about the usefulness and reliability of cerebral NIRS monitoring and, accordingly, its use in clinical practice varies widely worldwide. This is primarily due to the substantial lack of evidence showing improved outcomes with NIRS-guided management, combined with some limitations of the methodology such as the differences among the various commercially available devices and the lack of well-defined reference values and of clinically relevant thresholds for desaturations. In this chapter, we discuss the basic principles and the common clinical uses of cerebral oximetry and review the main evidence about the impact of NIRS-guided management on clinically relevant outcomes, in order to analyze the reasons that hinder a wider dissemination of a potentially useful monitoring tool and, accordingly, to outline the possible direction for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  Google Scholar 

  2. Ghosh A, Elwell C, Smith M (2012) Cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115(6):1373–1383

    Article  CAS  Google Scholar 

  3. Green DW, Kunst G (2017) Cerebral oximetry and its role in adult cardiac, non-cardiac surgery and resuscitation from cardiac arrest. Anaesthesia 72(Suppl 1):48–57

    Article  Google Scholar 

  4. Kasman N, Brady K (2011) Cerebral oximetry for pediatric anesthesia: why do intelligent clinicians disagree? Paediatr Anaesth 21(5):473–478

    Article  Google Scholar 

  5. Ghanayem NS, Hoffman GM (2016) Near infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med 17(8 Suppl 1):S201–S206

    Article  Google Scholar 

  6. Van Bel F, Lemmers P, Naulaers G (2008) Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 94(4):237–244

    Article  Google Scholar 

  7. Garvey AA, Dempsey EM (2018) Applications of near infrared spectroscopy in the neonate. Curr Opin Pediatr 30(2):209–215

    Article  Google Scholar 

  8. Dix LM, van Bel F, Lemmers PM (2017) Monitoring cerebral oxygenation in neonates: an update. Front Pediatr 5:46

    PubMed  PubMed Central  Google Scholar 

  9. Frogel J, Kogan A, Augoustides JGT et al (2019) The value of cerebral oximetry monitoring in cardiac surgery: challenges and solutions in adult and pediatric practice. J Cardiothorac Vasc Anesth. https://doi.org/10.1053/j.jvca.2018.08.206. pii: S1053-0770(18)30860-7. [Epub ahead of print]

    Article  Google Scholar 

  10. Denault A, Deschamps A, Murkin JM (2007) A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 11:274–281

    Article  Google Scholar 

  11. Newman M, Mathew J, Grocott H et al (2006) Central nervous system injury associated with cardiac surgery. Lancet 368:694–703

    Article  Google Scholar 

  12. Yoshitani K, Kawaguchi M, Ishida K et al (2019) Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA). J Anesth. https://doi.org/10.1007/s00540-019-02610-y. [Epub ahead of print]

    Article  Google Scholar 

  13. Greisen G, Leung T, Wolf M (2011) Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infantsundergoing intensive care? Philos Trans A Math Phys Eng Sci 369(1955):4440–4451

    Article  Google Scholar 

  14. Badenes R, García-Pérez ML, Bilotta F (2016) Intraoperative monitoring of cerebral oximetry and depth of anaesthesia during neuroanesthesia procedures. Curr Opin Anaesthesiol 29(5):576–581

    Article  CAS  Google Scholar 

  15. Wik L (2016) Near-infrared spectroscopy during cardiopulmonary resuscitation and after restoration of spontaneous circulation: a valid technology? Curr Opin Crit Care 22(3):191–198

    Article  Google Scholar 

  16. Parnia S, Yang J, Nguyen R et al (2016) Cerebral oximetry during cardiac arrest: a multicenter study of neurologic outcomes and survival. Crit Care Med 44(9):1663–1674

    Article  CAS  Google Scholar 

  17. Zheng F, Sheinberg R, Yee MS et al (2013) Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 116(3):663–676

    Article  Google Scholar 

  18. Bickler P, Feiner J, Rollins M, Meng L (2017) Tissue oximetry and clinical outcomes. Anesth Analg 124(1):72–82

    Article  Google Scholar 

  19. Vernick WJ, Gutsche JT (2013) Pro: cerebral oximetry should be a routine monitor during cardiac surgery. J Cardiothorac Vasc Anesth 27:385–389

    Article  Google Scholar 

  20. Gregory A, Kohl BA (2013) Con: near-infrared spectroscopy has not proven its clinical utility as a standard monitor in cardiac surgery. J Cardiothorac Vasc Anesth 27:390–394

    Article  Google Scholar 

  21. Zacharias DG, Lilly K, Shaw CL (2014) Survey of the clinical assessment and utility of near-infrared cerebral oximetry in cardiac surgery. J Cardiothorac Vasc Anesth 28(2):308–316

    Article  Google Scholar 

  22. Pisano A, Galdieri N, Iovino TP et al (2014) Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study. Heart Lung Vessel 6(3):197–203

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bickler PE, Feiner JR, Rollins MD (2013) Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers. Anesth Analg 117:813–823

    Article  CAS  Google Scholar 

  24. Tomlin KL, Neitenbach AM, Borg U (2017) Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers. BMC Anesthesiol 17(1):6

    Article  Google Scholar 

  25. Pisano A (2016) Can we claim accuracy from a regional near-infrared spectroscopy oximeter? Anesth Analg 122(3):920

    Article  Google Scholar 

  26. Pisano A (2017) Light, air pollution, and pulse oximetry: the Beer-Lambert law. In: Pisano A. Physics for anesthesiologists. Springer, Cham, pp 117–127

    Chapter  Google Scholar 

  27. Pisano A (2017) Scattering of electromagnetic waves: blue skies, cerebral oximetry, and some reassurance about X-rays. In: Pisano A. Physics for anesthesiologists. Springer, Cham, pp 129–141

    Chapter  Google Scholar 

  28. Chan ED, Chan MM, Chan MM (2013) Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med 107(6):789–799

    Article  Google Scholar 

  29. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116(4):834–840

    Article  CAS  Google Scholar 

  30. Watzman HM, Kurth CD, Montenegro LM et al (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93(4):947–953

    Article  CAS  Google Scholar 

  31. Heringlake M, Garbers C, Käbler JH et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114(1):58–69

    Article  Google Scholar 

  32. Schoen J, Meyerrose J, Paarmann H et al (2018) Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care 15(5):R218

    Article  Google Scholar 

  33. Ghosal S, Trivedi J, Chen J et al (2018) Regional cerebral oxygen saturation level predicts 30-day mortality rate after left ventricular assist device surgery. J Cardiothorac Vasc Anesth 32(3):1185–1190

    Article  Google Scholar 

  34. Zorrilla-Vaca A, Healy R, Grant MC et al (2018) Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anaesth 65(5):529–542

    Article  Google Scholar 

  35. Fischer GW (2008) Recent advances in application of cerebral oximetry in adult cardiovascular surgery. Semin Cardiothorac Vasc Anesth 12(1):60–69

    Article  Google Scholar 

  36. Edmonds HL Jr (2011) Central nervous system monitoring. In: Kaplan JA, Reich DL, Savino JS (eds) Kaplan’s cardiac anesthesia, 6th edn. Elsevier Saunders, St. Louis, pp 485–490

    Google Scholar 

  37. Deschamps A, Hall R, Grocott H et al (2016) Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology 124:826–836

    Article  CAS  Google Scholar 

  38. Subramanian B, Nyman C, Fritock M et al (2016) A multicenter pilot study assessing regional cerebral oxygen desaturation frequency during cardiopulmonary bypass and responsiveness to an intervention algorithm. Anesth Analg 122:1786–1793

    Article  CAS  Google Scholar 

  39. Grocott HP (2019) Cerebral oximetry monitoring. To guide physiology, avert catastrophe or both? Eur J Anaesthesiol 36(1):82–83

    Article  Google Scholar 

  40. Ono M, Joshi B, Brady K et al (2012) Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth 109(3):391–398

    Article  CAS  Google Scholar 

  41. Joshi B, Ono M, Brown C et al (2012) Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg 114:503–510

    Article  Google Scholar 

  42. Brodt J, Vladinov G, Castillo-Pedraza C et al (2016) Changes in cerebral oxygen saturation during transcatheter aortic valve replacement. J Clin Monit Comput 30(5):649–653

    Article  Google Scholar 

  43. Samra SK, Dy EA, Welch K et al (2000) Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology 93:964–970

    Article  CAS  Google Scholar 

  44. Ritter JC, Green D, Slim H et al (2011) The role of cerebral oximetry in combination with awake testing in patients undergoing carotid endarterectomy under local anaesthesia. Eur J Vasc Endovasc Surg 41:599–605

    Article  CAS  Google Scholar 

  45. Kamenskaya OV, Loginova IY, Lomivorotov VV (2017) Brain oxygen supply parameters in the risk assessment of cerebral complications during carotid endarterectomy. J Cardiothorac Vasc Anesth 31(3):944–949

    Article  Google Scholar 

  46. Jonsson M, Lindström D, Wanhainen A et al (2017) Near infrared spectroscopy as a predictor for shunt requirement during carotid endarterectomy. Eur J Vasc Endovasc Surg 53(6):783–791

    Article  CAS  Google Scholar 

  47. Bendahan N, Neal O, Ross-White A et al (2018) Relationship between near-infrared spectroscopy derived cerebral oxygenation and delirium in critically ill patients: a systematic review. J Intensive Care Med 30:885066618807399. https://doi.org/10.1177/0885066618807399. [Epub ahead of print]

    Article  Google Scholar 

  48. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A et al (2017) Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care 27(3):362–369

    Article  CAS  Google Scholar 

  49. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A et al (2019) Near-infrared spectroscopy-derived cerebral autoregulation indices independently predict clinical outcome in acutely ill comatose patients. J Neurosurg Anesthesiol. https://doi.org/10.1097/ANA.0000000000000589. [Epub ahead of print]

  50. Leal-Noval SR, Arellano-Orden V, Muñoz-Gómez M et al (2017) Red blood cell transfusion guided by near infrared spectroscopy in neurocritically ill patients with moderate or severe Anemia: a randomized, controlled trial. J Neurotrauma 34(17):2553–2559

    Article  Google Scholar 

  51. Sanfilippo F, Serena G, Corredor C et al (2015) Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation 94:67–72

    Article  Google Scholar 

  52. Genbrugge C, De Deyne C, Eertmans W et al (2018) Cerebral saturation in cardiac arrest patients measured with near-infrared technology during pre-hospital advanced life support. Results from Copernicus I cohort study. Resuscitation 129:107–113

    Article  Google Scholar 

  53. Sandroni C, Parnia S, Nolan JP (2019) Cerebral oximetry in cardiac arrest: a potential role but with limitations. Intensive Care Med 45(6):904–906. https://doi.org/10.1007/s00134-019-05572-7. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  54. Khan I, Rehan M, Parikh G et al (2018) Regional cerebral oximetry as an indicator of acute brain injury in adults undergoing veno-arterial extracorporeal membrane oxygenation–a prospective pilot study. Front Neurol 9:993

    Article  Google Scholar 

  55. Pozzebon S, Blandino Ortiz A, Franchi F (2018) Cerebral near-infrared spectroscopy in adult patients undergoing veno-arterial extracorporeal membrane oxygenation. Neurocrit Care 29(1):94–104

    Article  Google Scholar 

  56. Olbrecht VA, Skowno J, Marchesini V et al (2018) An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology 128(1):85–96

    Article  Google Scholar 

  57. Martini S, Corvaglia L (2018) Splanchnic NIRS monitoring in neonatal care: rationale, current applications and future perspectives. J Perinatol 38(5):431–443

    Article  Google Scholar 

  58. Hyttel-Sorensen S, Pellicer A, Alderliesten T et al (2015) Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 350:g7635

    Article  Google Scholar 

  59. Plomgaard AM, Alderliesten T, van Bel F et al (2019) No neurodevelopmental benefit of cerebral oximetry in the first randomized trial (SafeBoosC II) in preterm infants during the first days of life. Acta Paediatr 108(2):275–281

    Article  Google Scholar 

  60. Gómez-Pesquera E, Poves-Alvarez R, Martinez-Rafael B et al (2019) Cerebral oxygen saturation and negative postoperative behavioral changes in pediatric surgery: a prospective observational study. J Pediatr 208:207–213.e1. https://doi.org/10.1016/j.jpeds.2018.12.047. pii: S0022-3476(18)31821-3. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  61. Beck J, Loron G, Masson C et al (2017) Monitoring cerebral and renal oxygenation status during neonatal digestive surgeries using near infrared spectroscopy. Front Pediatr 5:140

    Article  Google Scholar 

  62. Slater JP, Guarino T, Stack J et al (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87(1):36–44

    Article  Google Scholar 

  63. de Tournay-Jetté E, Dupuis G, Bherer L et al (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25:95–104

    Article  Google Scholar 

  64. Yao FS, Tseng CC, Ho CY et al (2004) Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 18:552–558

    Article  Google Scholar 

  65. Olsson C, Thelin S (2006) Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegrade cerebral perfusion: diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg 131(2):371–379

    Article  Google Scholar 

  66. Fischer GW, Lin HM, Krol M et al (2011) Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg 141:815–821

    Article  Google Scholar 

  67. Casati A, Fanelli G, Pietropaoli P et al (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101:740–747

    Article  Google Scholar 

  68. Murkin JM, Adams SJ, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104(1):51–58

    Article  Google Scholar 

  69. Chan MJ, Chung T, Glassford NJ, Bellomo R (2017) Near-infrared spectroscopy in adult cardiac surgery patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 31(4):1155–1165

    Article  Google Scholar 

  70. Lei L, Katznelson R, Fedorko L et al (2017) Cerebral oximetry and postoperative delirium after cardiac surgery: a randomised, controlled trial. Anaesthesia 72(12):1456–1466

    Article  CAS  Google Scholar 

  71. Rogers CA, Stoica S, Ellis L et al (2017) Randomized trial of near-infrared spectroscopy for personalized optimization of cerebral tissue oxygenation during cardiac surgery. Br J Anaesth 119(3):384–393

    Article  CAS  Google Scholar 

  72. Serraino GF, Murphy GJ (2017) Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised trials. BMJ Open 7(9):e016613

    Article  Google Scholar 

  73. Yu Y, Zhang K, Zhang L et al (2018) Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev 1:CD010947

    PubMed  Google Scholar 

  74. Sørensen H, Secher NH, Siebenmann C et al (2012) Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology 117(2):263–270

    Article  Google Scholar 

  75. McAvoy J, Jaffe R, Brock-Utne J et al (2019) Cerebral oximetry fails as a monitor of brain perfusion in cardiac surgery: a case report. A A Pract 12(11):441–443. https://doi.org/10.1213/XAA.0000000000000963

    Article  PubMed  Google Scholar 

  76. Biedrzycka A, Lango R (2016) Tissue oximetry in anaesthesia and intensive care. Anaesthesiol Intensive Ther 48(1):41–48

    Article  Google Scholar 

  77. Fellahi JL, Butin G, Fischer MO et al (2013) Dynamic evaluation of near-infrared peripheral oximetry in healthy volunteers: a comparison between INVOS and EQUANOX. J Crit Care 28:881

    Article  Google Scholar 

  78. Hyttel-Sorensen S, Hessel TW, Greisen G (2014) Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm. J Clin Monit Comput 28:149–155

    Article  Google Scholar 

  79. Schneider A, Minnich B, Hofstätter E et al (2014) Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants. Acta Paediatr 103(9):934–938

    Article  CAS  Google Scholar 

  80. Redford D, Paidy S, Kashif F (2014) Absolute and trend accuracy of a new regional oximeter in healthy volunteers during controlled hypoxia. Anesth Analg 119:1315–1319

    Article  CAS  Google Scholar 

  81. Eyeington CT, Ancona P, Osawa EA et al (2019) Modern technology–derived normative values for cerebral tissue oxygen saturation in adults. Anaesth Intensive Care 47(1):69–75

    Article  Google Scholar 

  82. Moerman A, De Hert S (2015) Cerebral oximetry: the standard monitor of the future? Curr Opin Anesthesiol 28:703–709

    Article  CAS  Google Scholar 

  83. Gunadi S, Leung TS, Elwell CE, Tachtsidis I (2014) Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. Biomed Opt Express 5(9):2896–2912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pisano, A., Di Fraja, D., Palmieri, C. (2020). Monitoring Cerebral Oximetry by Near-Infrared Spectroscopy (NIRS) in Anesthesia and Critical Care: Progress and Perspectives. In: Cascella, M. (eds) General Anesthesia Research. Neuromethods, vol 150. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9891-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9891-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9890-6

  • Online ISBN: 978-1-4939-9891-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics