Skip to main content

Virus-Derived Nanoparticles

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Capsid-based virus particles are widely engineered as viral nanoparticles and virus-like nanoparticles. The highly organized and uniform capsid structures make them ideal candidates for both in vitro and in vivo applications such as therapeutic delivery vehicles or enzymatic nanoreactors. Viruses have adapted to naturally infect a wide variety of organisms making their production achievable in various expression systems from bacterial to plants. Viral capsids can be modified externally and internally to suit the final application. The wide range of possible applications, ease of production in the system of choice, and customizable modification of viral capsids makes them an attractive choice in the field of nanotechnology. In this chapter we aim to provide a generic protocol for the purification and characterization of virus-derived nanoparticles and methodology for chemically labelling them to monitor their uptake in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185. https://doi.org/10.1038/nchem.2416

    Article  CAS  PubMed  Google Scholar 

  2. Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384. https://doi.org/10.1146/annurev.phyto.032508.131939

    Article  CAS  PubMed  Google Scholar 

  3. Shukla S, Steinmetz NF (2015) Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):708–721. https://doi.org/10.1002/wnan.1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF, Fiering S (2015) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295. https://doi.org/10.1038/nnano.2015.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrillo-Tripp M, Shepherd CM, Borelli IA, Venkataraman S, Lander G, Natarajan P, Johnson JE, Brooks CL, Reddy VS (2009) VIPERdb(2): an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res 37(Database issue):D436–D442. https://doi.org/10.1093/nar/gkn840

    Article  CAS  PubMed  Google Scholar 

  6. Lomonossoff GP, Evans DJ (2014) Applications of plant viruses in bionanotechnology. In: Palmer K, Gleba Y (eds) Plant viral vectors. Springer, Berlin, pp 61–87. https://doi.org/10.1007/82_2011_184

    Chapter  Google Scholar 

  7. Catrice EV, Sainsbury F (2015) Assembly and purification of polyomavirus-like particles from plants. Mol Biotechnol 57(10):904–913. https://doi.org/10.1007/s12033-015-9879-9

    Article  CAS  PubMed  Google Scholar 

  8. Saunders K, Sainsbury F, Lomonossoff GP (2009) Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology 393(2):329–337. https://doi.org/10.1016/j.virol.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  9. Patterson DP, LaFrance B, Douglas T (2013) Rescuing recombinant proteins by sequestration into the P22 VLP. Chem Commun 49(88):10412–10414. https://doi.org/10.1039/c3cc46517a

    Article  CAS  Google Scholar 

  10. Brillault L, Jutras PV, Dashti N, Thuenemann EC, Morgan G, Lomonossoff GP, Landsberg MJ, Sainsbury F (2017) Engineering recombinant virus-like nanoparticles from plants for cellular delivery. ACS Nano 11(4):3476–3484. https://doi.org/10.1021/acsnano.6b07747

    Article  CAS  PubMed  Google Scholar 

  11. Wen AM, Shukla S, Saxena P, Aljabali AAA, Yildiz I, Dey S, Mealy JE, Yang AC, Evans DJ, Lomonossoff GP, Steinmetz NF (2012) Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules 13(12):3990–4001. https://doi.org/10.1021/bm301278f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M (2004) Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85(Pt 4):1049–1053. https://doi.org/10.1099/vir.0.19688-0

    Article  CAS  PubMed  Google Scholar 

  13. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira JC, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7):5729–5745. https://doi.org/10.1021/nn201397z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Neil A, Reichhardt C, Johnson B, Prevelige PE, Douglas T (2011) Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22. Angew Chem Int Ed 50(32):7425–7428. https://doi.org/10.1002/anie.201102036

    Article  CAS  Google Scholar 

  15. Rhee J-K, Hovlid M, Fiedler JD, Brown SD, Manzenrieder F, Kitagishi H, Nycholat C, Paulson JC, Finn MG (2011) Colorful virus-like particles: fluorescent protein packaging by the Qβ capsid. Biomacromolecules 12(11):3977. https://doi.org/10.1021/bm200983k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasnauskas K, Buzaite O, Vogel F, Jandrig B, Razanskas R, Staniulis J, Scherneck S, Kruger DH, Ulrich R (1999) Yeast cells allow high-level expression and formation of polyomavirus-like particles. Biol Chem 380(3):381–386. https://doi.org/10.1515/BC.1999.050

    Article  CAS  PubMed  Google Scholar 

  17. Dashti NH, Abidin RS, Sains-bury F (2018) Programmable coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano 12(5):4615–4623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sainsbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dashti, N.H., Sainsbury, F. (2020). Virus-Derived Nanoparticles. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics