Skip to main content

Isolation of Anti-Hapten Antibodies by Fluorescence-Activated Cell Sorting of Yeast-Displayed B-Cell Receptor Gene Repertoires

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Abstract

Anti-hapten antibodies are widely used as specific immunochemical detection tools in a variety of clinical and environmental analyses. The sensitivity, however, is limited due to the resulting antibody affinities to the haptens which, in turn, leads to a high demand for specific affinity reagents. A well-established path for the generation of high-affinity antibodies is the immunization of animals with the target antigen. However, the generation of anti-hapten antibodies via immunization remains challenging as small molecule haptens usually possess low immunogenicity and, therefore, must be coupled to an immunogenic and high molecular weight carrier to provoke an immune response.

Consequently, antibodies are primarily raised against the carrier molecule or structural features of the hapten-linker fused to the carrier protein. This turns the generation of antibodies which bind exclusively to the hapten structure into a search for the needle in a haystack. In the following chapter, we describe how yeast surface display and high-throughput fluorescence-activated cell sorting can be used to isolate anti-hapten antibodies from a large, yeast-displayed B-cell receptor gene library derived from immunized animals. For this, we describe in detail the preparation of protein-hapten conjugates, the immunization procedure, and the subsequent screening process. Moreover, we provide a simple flow cytometry protocol that allows for a rapid analysis of the enriched clones toward free hapten binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grilo AL, Mantalaris A (2019) The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 37:9–16

    Article  CAS  Google Scholar 

  2. Gao Y, Huang X, Zhu Y, Lv Z (2018) A brief review of monoclonal antibody technology and its representative applications in immunoassays. J Immunoass Immunochem 39:351–364

    Article  CAS  Google Scholar 

  3. Sheedy C, Roger MacKenzie C, Hall JC (2007) Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv 25:333–352

    Article  CAS  Google Scholar 

  4. Kavanagh O, Elliott CT, Campbell K (2015) Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins. Anal Bioanal Chem 407:2749–2770

    Article  CAS  Google Scholar 

  5. Oyama H, Yamaguchi S, Nakata S et al (2013) “Breeding” diagnostic antibodies for higher assay performance: a 250-fold affinity-matured antibody mutant targeting a small biomarker. Anal Chem 85:4930–4937

    Article  CAS  Google Scholar 

  6. Salomon PL, Singh R (2015) Sensitive ELISA method for the measurement of catabolites of antibody-drug conjugates (ADCs) in target cancer cells. Mol Pharm 12:1752–1761

    Article  CAS  Google Scholar 

  7. Kovtun YV, Audette CA, Ye Y et al (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221

    Article  CAS  Google Scholar 

  8. Erlanger BF (1980) The preparation of antigenic hapten-carrier conjugates: a survey. In: Methods in enzymology, vol 70. Academic, London, pp 85–104

    Google Scholar 

  9. Sun Y, Ban B, Bradbury A et al (2016) Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries. Anal Chem 88:9181–9189

    Article  CAS  Google Scholar 

  10. Moghaddam A, Løbersli I, Gebhardt K et al (2001) Selection and characterisation of recombinant single-chain antibodies to the hapten aflatoxin-B1 from naive recombinant antibody libraries. J Immunol Methods 254:169–181

    Article  CAS  Google Scholar 

  11. Kobayashi N, Oyama H (2011) Antibody engineering toward high-sensitivity high-throughput immunosensing of small molecules. Analyst 136:642–651

    Article  CAS  Google Scholar 

  12. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  Google Scholar 

  13. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. In: Methods in enzymology, vol 328. Academic, London, pp 333–363

    Google Scholar 

  14. Li Y, Cockburn W, Kilpatrick JB, Whitelam GC (2000) High affinity ScFvs from a single rabbit immunized with multiple haptens. Biochem Biophys Res Commun 268:398–404

    Article  CAS  Google Scholar 

  15. Chames P, Coulon S, Baty D (1998) Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display. J Immunol 161:5421–5429

    CAS  PubMed  Google Scholar 

  16. Orcutt KD, Slusarczyk AL, Cieslewicz M et al (2011) Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol 38:223–233

    Article  CAS  Google Scholar 

  17. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci 97:10701–10705

    Article  CAS  Google Scholar 

  18. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106

    Article  CAS  Google Scholar 

  19. Charlton KA, Moyle S, Porter AJR, Harris WJ (2000) Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library. J Immunol 164:6221–6229

    Article  CAS  Google Scholar 

  20. Grzeschik J, Yanakieva D, Roth L et al (2018) Yeast surface display in combination with fluorescence-activated cell sorting enables the rapid isolation of antibody fragments derived from immunized chickens. Biotechnol J. https://doi.org/10.1002/biot.201800466

    Article  Google Scholar 

  21. Spinelli S, Frenken LGJ, Hermans P et al (2000) Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39:1217–1222

    Article  CAS  Google Scholar 

  22. Krah S, Schröter C, Zielonka S et al (2016) Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 38:21–28

    Article  CAS  Google Scholar 

  23. Weaver-Feldhaus JM, Lou J, Coleman JR et al (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34

    Article  CAS  Google Scholar 

  24. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  Google Scholar 

  25. Hermanson G (2008) Preparation of hapten-carrier immunogen conjugates. In: Bioconjugate techniques, 2nd edn. Academic, London, pp 745–782

    Google Scholar 

  26. Pedersen MK, Sorensen NS, Heegaard PMH et al (2006) Effect of different hapten-carrier conjugation ratios and molecular orientations on antibody affinity against a peptide antigen. J Immunol Methods 311:198–206

    Article  CAS  Google Scholar 

  27. Li Q, Rodriguez LG, Farnsworth DF, Gildersleeve JC (2010) Effects of hapten density on the induced antibody repertoire. Chembiochem 11:1686–1691

    Article  CAS  Google Scholar 

  28. Hermanson G (2008) Antibody Modification and Conjugation. In: Bioconjugate techniques, 2nd edn. Academic, London, pp 783–823

    Chapter  Google Scholar 

  29. Krah S, Schröter C, Eller C et al (2017) Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display. Protein Eng Des Sel 30:291–301

    CAS  Google Scholar 

  30. Schröter C, Günther R, Rhiel L et al (2015) A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. MAbs 7:138–151

    Article  Google Scholar 

  31. Orcutt KD, Wittrup KD (2010) Yeast display and selection. In: Kontermann R, Dübel S (eds) Antibody engineering, vol 1. Springer, Heidelberg, pp 207–233

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schröter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jäger, S. et al. (2020). Isolation of Anti-Hapten Antibodies by Fluorescence-Activated Cell Sorting of Yeast-Displayed B-Cell Receptor Gene Repertoires. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics