Skip to main content

Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Abstract

In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreu N, Zelmer A, Wiles S (2011) Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 35(2):360–394

    Article  CAS  Google Scholar 

  2. Hutchens M, Luker GD (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9(10):2315–2322

    Article  CAS  Google Scholar 

  3. Ohlsen K, Hertlein T (2018) Towards clinical application of non-invasive imaging to detect bacterial infections. Virulence 9(1):943–945. https://doi.org/10.1080/21505594.2018.1425072

    Article  PubMed  Google Scholar 

  4. van Oosten M, Hahn M, Crane LM, Pleijhuis RG, Francis KP, van Dijl JM et al (2015) Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev 39(6):892–916. https://doi.org/10.1093/femsre/fuv029

    Article  CAS  PubMed  Google Scholar 

  5. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29(12):624–633

    Article  CAS  Google Scholar 

  6. Sjollema J, Sharma PK, Dijkstra RJ, van Dam GM, van der Mei HC, Engelsman AF et al (2010) The potential for bio-optical imaging of biomaterial-associated infection in vivo. Biomaterials 31(8):1984–1995

    Article  CAS  Google Scholar 

  7. Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68(6):3594–3600

    Article  CAS  Google Scholar 

  8. Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE et al (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24(1):79–91. https://doi.org/10.1016/j.immuni.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  9. Plaut RD, Mocca CP, Prabhakara R, Merkel TJ, Stibitz S (2013) Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. PLoS One 8(3):e59232. https://doi.org/10.1371/journal.pone.0059232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(Pt 1):1–15. https://doi.org/10.1111/j.0022-2720.2005.01441.x

    Article  CAS  PubMed  Google Scholar 

  11. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  12. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C et al (2012) Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8(11):e1003047. https://doi.org/10.1371/journal.ppat.1003047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsushima H, Ogawa Y, Miyazaki T, Tanaka H, Nishibu A, Takashima A (2010) Intravital imaging of IL-1beta production in skin. J Invest Dermatol 130(6):1571–1580

    Article  CAS  Google Scholar 

  14. Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simon SI et al (2010) A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One 5(9):e12580. https://doi.org/10.1371/journal.pone.0012580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falahee PC, Anderson LS, Reynolds MB, Pirir M, McLaughlin BE, Dillen CA et al (2017) Alpha-toxin regulates local granulocyte expansion from hematopoietic stem and progenitor cells in Staphylococcus aureus-infected wounds. J Immunol 199(5):1772–1782. https://doi.org/10.4049/jimmunol.1700649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96(2):719–726

    CAS  PubMed  Google Scholar 

  17. Granick JL, Falahee PC, Dahmubed D, Borjesson DL, Miller LS, Simon SI (2013) Staphylococcus aureus recognition by hematopoietic stem and progenitor cells via TLR2/MyD88/PGE2 stimulates granulopoiesis in wounds. Blood 122(10):1770–1778. https://doi.org/10.1182/blood-2012-11-466268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim MH, Granick JL, Kwok C, Walker NJ, Borjesson DL, Curry FR et al (2011) Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood 117(12):3343–3352. https://doi.org/10.1182/blood-2010-07-296970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim MH, Liu W, Borjesson DL, Curry FR, Miller LS, Cheung AL et al (2008) Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Invest Dermatol 128(7):1812–1820. https://doi.org/10.1038/sj.jid.5701223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H et al (2007) Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179(10):6933–6942

    Article  CAS  Google Scholar 

  21. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR et al (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120(5):1762–1773. https://doi.org/10.1172/JCI40891

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan LC, Chaili S, Filler SG, Barr K, Wang H, Kupferwasser D et al (2015) Nonredundant roles of interleukin-17A (IL-17A) and IL-22 in murine host defense against cutaneous and Hematogenous infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 83(11):4427–4437. https://doi.org/10.1128/IAI.01061-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan LC, Chaili S, Filler SG, Miller LS, Solis NV, Wang H et al (2017) Innate immune memory contributes to host defense against recurrent skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus. Infect Immun 85(2):e00876-16. https://doi.org/10.1128/IAI.00876-16

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brandt SL, Klopfenstein N, Wang S, Winfree S, McCarthy BP, Territo PR et al (2018) Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice. PLoS Pathog 14(8):e1007244. https://doi.org/10.1371/journal.ppat.1007244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan LC, Rossetti M, Miller LS, Filler SG, Johnson CW, Lee HK et al (2018) Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory. Proc Natl Acad Sci U S A 115:E11111. https://doi.org/10.1073/pnas.1808353115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dillen CA, Pinsker BL, Marusina AI, Merleev AA, Farber ON, Liu H et al (2018) Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection. J Clin Invest 128(3):1026–1042. https://doi.org/10.1172/JCI96481

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV et al (2017) Staphylococcus aureus Epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe 22(5):653–666.e655. https://doi.org/10.1016/j.chom.2017.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T et al (2017) Staphylococcus aureus virulent PSMα peptides induce keratinocyte Alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 22(5):667–677.e665. https://doi.org/10.1016/j.chom.2017.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M et al (2013) Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503(7476):397–401. https://doi.org/10.1038/nature12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho JS, Zussman J, Donegan NP, Ramos RI, Garcia NC, Uslan DZ et al (2011) Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J Invest Dermatol 131(4):907–915. https://doi.org/10.1038/jid.2010.417

    Article  CAS  PubMed  Google Scholar 

  31. Guo Y, Ramos RI, Cho JS, Donegan NP, Cheung AL, Miller LS (2013) In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice. Antimicrob Agents Chemother 57(2):855–863. https://doi.org/10.1128/AAC.01003-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ortines RV, Liu H, Cheng LI, Cohen TS, Lawlor H, Gami A et al (2018) Neutralizing alpha-toxin accelerates healing of Staphylococcus aureus-infected wounds in nondiabetic and diabetic mice. Antimicrob Agents Chemother 62(3):e02288-17. https://doi.org/10.1128/AAC.02288-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Niska JA, Meganck JA, Pribaz JR, Shahbazian JH, Lim E, Zhang N et al (2012) Monitoring bacterial burden, inflammation and bone damage longitudinally using optical and muCT imaging in an orthopaedic implant infection in mice. PLoS One 7(10):e47397. https://doi.org/10.1371/journal.pone.0047397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niska JA, Shahbazian JH, Ramos RI, Pribaz JR, Billi F, Francis KP et al (2012) Daptomycin and tigecycline have broader effective dose ranges than vancomycin as prophylaxis against a Staphylococcus aureus surgical implant infection in mice. Antimicrob Agents Chemother 56(5):2590–2597. https://doi.org/10.1128/AAC.06291-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pribaz JR, Bernthal NM, Billi F, Cho JS, Ramos RI, Guo Y et al (2012) Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. J Orthop Res 30(3):335–340. https://doi.org/10.1002/jor.21519

    Article  PubMed  Google Scholar 

  36. Niska JA, Shahbazian JH, Ramos RI, Francis KP, Bernthal NM, Miller LS (2013) Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob Agents Chemother 57(10):5080–5086. https://doi.org/10.1128/AAC.00702-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernthal NM, Taylor BN, Meganck JA, Wang Y, Shahbazian JH, Niska JA et al (2014) Combined in vivo optical and microCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice. J Vis Exp 92:e51612. https://doi.org/10.3791/51612

    Article  CAS  Google Scholar 

  38. Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim WS, Thompson JM et al (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci U S A 113(45):E6919–E6928. https://doi.org/10.1073/pnas.1613722113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stavrakis AI, Zhu S, Hegde V, Loftin AH, Ashbaugh AG, Niska JA et al (2016) In vivo efficacy of a “smart” antimicrobial implant coating. J Bone Joint Surg Am 98(14):1183–1189. https://doi.org/10.2106/JBJS.15.01273

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thompson JM, Saini V, Ashbaugh AG, Miller RJ, Ordonez AA, Ortines RV et al (2017) Oral-only linezolid-rifampin is highly effective compared with other antibiotics for Periprosthetic joint infection: study of a mouse model. J Bone Joint Surg Am 99(8):656–665. https://doi.org/10.2106/JBJS.16.01002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Thompson JM, Ashbaugh AG, Khodakivskyi P, Budin G, Sinisi R et al (2017) Preclinical evaluation of photoacoustic imaging as a novel noninvasive approach to detect an orthopaedic implant infection. J Am Acad Orthop Surg 25(Suppl 1):S7–S12. https://doi.org/10.5435/JAAOS-D-16-00630

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Cheng LI, Helfer DR, Ashbaugh AG, Miller RJ, Tzomides AJ et al (2017) Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets. Proc Natl Acad Sci U S A 114(26):E5094–E5102. https://doi.org/10.1073/pnas.1703427114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller RJ, Thompson JM, Zheng J, Marchitto MC, Archer NK, Pinsker BL et al (2019) In vivo bioluminescence imaging in a rabbit model of orthopedic implant-associated infection to monitor efficacy of an antibiotic-releasing coating. J Bone Joint Surg Am 101(4):e12

    Article  Google Scholar 

  44. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186(11):6585–6596. https://doi.org/10.4049/jimmunol.1002794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romero Pastrana F, Thompson JM, Heuker M, Hoekstra H, Dillen CA, Ortines RV et al (2018) Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence 9(1):262–272. https://doi.org/10.1080/21505594.2017.1403004

    Article  CAS  PubMed  Google Scholar 

  46. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375(9725):1557–1568. https://doi.org/10.1016/S0140-6736(09)61999-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S et al (2017) Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med 9(397):eaal4651. https://doi.org/10.1126/scitranslmed.aal4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859. https://doi.org/10.1101/gr.131029.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eleftheriadou I, Tentolouris N, Argiana V, Jude E, Boulton AJ (2010) Methicillin-resistant Staphylococcus aureus in diabetic foot infections. Drugs 70(14):1785–1797. https://doi.org/10.2165/11538070-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  51. Alavi A, Sibbald RG, Mayer D, Goodman L, Botros M, Armstrong DG et al (2014) Diabetic foot ulcers: part II. Management. J Am Acad Dermatol 70(1):21.e21–21.e24.; ; quiz 45-26. https://doi.org/10.1016/j.jaad.2013.07.048

    Article  Google Scholar 

  52. Alavi A, Sibbald RG, Mayer D, Goodman L, Botros M, Armstrong DG et al (2014) Diabetic foot ulcers: part I. Pathophysiology and prevention. J Am Acad Dermatol 70(1):1.e1–1.18; quiz 19-20. https://doi.org/10.1016/j.jaad.2013.06.055

    Article  Google Scholar 

  53. Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ et al (2016) Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81:157–168. https://doi.org/10.1016/j.biomaterials.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  54. Schierle CF, De la Garza M, Mustoe TA, Galiano RD (2009) Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 17(3):354–359. https://doi.org/10.1111/j.1524-475X.2009.00489.x

    Article  PubMed  Google Scholar 

  55. Del Pozo JL, Patel R (2009) Clinical practice. Infection associated with prosthetic joints. N Engl J Med 361(8):787–794. https://doi.org/10.1056/NEJMcp0905029

    Article  PubMed  PubMed Central  Google Scholar 

  56. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):e1–e25. https://doi.org/10.1093/cid/cis803

    Article  PubMed  Google Scholar 

  57. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654. https://doi.org/10.1056/NEJMra040181

    Article  CAS  PubMed  Google Scholar 

  58. Konigsberg BS, Della Valle CJ, Ting NT, Qiu F, Sporer SM (2014) Acute hematogenous infection following total hip and knee arthroplasty. J Arthroplast 29(3):469–472. https://doi.org/10.1016/j.arth.2013.07.021

    Article  Google Scholar 

  59. Sendi P, Banderet F, Graber P, Zimmerli W (2011) Periprosthetic joint infection following Staphylococcus aureus bacteremia. J Infect 63(1):17–22. https://doi.org/10.1016/j.jinf.2011.05.005

    Article  PubMed  Google Scholar 

  60. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302–345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lovati AB, Bottagisio M, de Vecchi E, Gallazzi E, Drago L (2017) Animal models of implant-related low-grade infections. A twenty-year review. Adv Exp Med Biol 971:29–50. https://doi.org/10.1007/5584_2016_157

    Article  PubMed  Google Scholar 

  62. Spaan AN, van Strijp JAG, Torres VJ (2017) Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15(7):435–447. https://doi.org/10.1038/nrmicro.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01AR069502 and R01AR073665 [to L.S.M.]), and the National Institute of Allergy and Infectious Diseases (grant numbers: R21AI126896 [to L.S.M.] and R01 AI047294 [to S.S.] and R56 AI103687 [to S.I.S.]) from the US National Institutes of Health, Department of Health and Human Services. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd S. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Archer, N.K. et al. (2020). Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics