Skip to main content

Digital Holographic Imaging as a Method for Quantitative, Live Cell Imaging of Drug Response to Novel Targeted Cancer Therapies

  • Protocol
  • First Online:
Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

Abstract

Digital holographic imaging (DHI) is a noninvasive, live cell imaging technique that enables long-term quantitative visualization of cells in culture. DHI uses phase-shift imaging to monitor and quantify cellular events such as cell division, cell death, cell migration, and drug responses. In recent years, the application of DHI has expanded from its use in the laboratory to the clinical setting, and currently it is being developed for use in theranostics. Here, we describe the use of the DHI platform HoloMonitorM4 to evaluate the effects of novel, targeted cancer therapies on cell viability and proliferation using the HeLa cancer cell line as a model. We present single cell tracking and population-wide analysis of multiple cell morphology parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alm K, Cirenawis H, Gisselsson L, Wingren AG, Janicke B, Molder A, Oredsson S, Persson J (2011) Digital holography and cell studies. IntechOpen, London

    Book  Google Scholar 

  2. Alm K, El-Schich Z, Falck M, Gjrloff Wingren A, Janicke B, Oredsso S (2013) Cells and holograms – holograms and digital holographic microscopy as a tool to study the morphology of living cells. In: Holography – basic principles and contemporary applications. https://doi.org/10.5772/54505

    Chapter  Google Scholar 

  3. Kemper B, von Bally G (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 47(4):A52–A61

    Article  Google Scholar 

  4. <1055–1062.pdf>

    Google Scholar 

  5. El-Schich Z, Kamlund S, Janicke B, Alm K, Wingren AG (2017) Holography: the usefulness of digital holographic microscopy for clinical diagnostics. In: Holographic materials and optical systems. https://doi.org/10.5772/66042

    Chapter  Google Scholar 

  6. Cox S (2015) Super-resolution imaging in live cells. Dev Biol 401(1):175–181. https://doi.org/10.1016/j.ydbio.2014.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Purschke M, Rubio N, Held KD, Redmond RW (2010) Phototoxicity of Hoechst 33342 in time-lapse fluorescence microscopy. Photochem Photobiol Sci 9(12):1634–1639. https://doi.org/10.1039/c0pp00234h

    Article  CAS  PubMed  Google Scholar 

  8. Tinevez JY, Dragavon J, Baba-Aissa L, Roux P, Perret E, Canivet A et al (2012) A quantitative method for measuring phototoxicity of a live cell imaging microscope. Methods Enzymol 506:291–309. https://doi.org/10.1016/b978-0-12-391856-7.00039-1

    Article  CAS  PubMed  Google Scholar 

  9. Janicke B, Karsnas A, Egelberg P, Alm K (2017) Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy. Cytometry A 91(5):460–469. https://doi.org/10.1002/cyto.a.23108

    Article  PubMed  Google Scholar 

  10. Molder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K (2008) Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. J Microsc 232(2):240–247. https://doi.org/10.1111/j.1365-2818.2008.02095.x

    Article  CAS  PubMed  Google Scholar 

  11. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  12. Kamlund S, Strand D, Janicke B, Alm K, Oredsson S (2017) Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle 16(21):2128–2138. https://doi.org/10.1080/15384101.2017.1380131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langehanenberg P, Ivanova L, Bernhardt I, Ketelhut S, Vollmer A, Dirksen D et al (2009) Automated three-dimensional tracking of living cells by digital holographic microscopy. J Biomed Opt 14(1):014018. https://doi.org/10.1117/1.3080133

    Article  PubMed  Google Scholar 

  14. El-Schich Z, Molder A, Tassidis H, Harkonen P, Falck Miniotis M, Gjorloff Wingren A (2015) Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy. J Struct Biol 189(3):207–212. https://doi.org/10.1016/j.jsb.2015.01.010

    Article  PubMed  Google Scholar 

  15. Kavitha N, Chen Y, Kanwar JR, Sasidharan S (2017) In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation. Biomed Pharmacother 87:609–620. https://doi.org/10.1016/j.biopha.2016.12.127

    Article  CAS  PubMed  Google Scholar 

  16. Kunzelmann K (2016) Ion channels in regulated cell death. Cell Mol Life Sci 73(11–12):2387–2403. https://doi.org/10.1007/s00018-016-2208-z

    Article  CAS  PubMed  Google Scholar 

  17. Ousingsawat J, Cabrita I, Wanitchakool P, Sirianant L, Krautwald S, Linkermann A et al (2017) Ca(2+) signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cell Mol Life Sci 74(1):173–181. https://doi.org/10.1007/s00018-016-2338-3

    Article  CAS  PubMed  Google Scholar 

  18. Ousingsawat J, Wanitchakool P, Schreiber R, Kunzelmann K (2018) Contribution of TMEM16F to pyroptotic cell death. Cell Death Dis 9(3):300. https://doi.org/10.1038/s41419-018-0373-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S (2017) Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: the anti-cancer study with various microscopy methods. Biomed Pharmacother 91:366–377. https://doi.org/10.1016/j.biopha.2017.04.112

    Article  CAS  PubMed  Google Scholar 

  20. Falck Miniotis M, Mukwaya A, Gjorloff Wingren A (2014) Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells. PLoS One 9(9):e106546. https://doi.org/10.1371/journal.pone.0106546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo P, Huang J, Moses MA (2017) Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry A 91(5):424–432. https://doi.org/10.1002/cyto.a.23083

    Article  CAS  PubMed  Google Scholar 

  22. Farkas E, Szekacs A, Kovacs B, Olah M, Horvath R, Szekacs I (2018) Label-free optical biosensor for real-time monitoring the cytotoxicity of xenobiotics: a proof of principle study on glyphosate. J Hazard Mater 351:80–89. https://doi.org/10.1016/j.jhazmat.2018.02.045

    Article  CAS  PubMed  Google Scholar 

  23. Hackler L Jr, Ozsvari B, Gyuris M, Sipos P, Fabian G, Molnar E et al (2016) The curcumin analog C-150, influencing NF-kappaB, UPR and Akt/notch pathways has potent anticancer activity in vitro and in vivo. PLoS One 11(3):e0149832. https://doi.org/10.1371/journal.pone.0149832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozdemir A, Yildiz M, Senol FS, Simay YD, Ibisoglu B, Gokbulut A et al (2017) Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem Toxicol 109(Pt 2):898–909. https://doi.org/10.1016/j.fct.2017.03.062

    Article  CAS  PubMed  Google Scholar 

  25. Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L et al (2014) The role of PI3K/AKT-related PIP5K1alpha and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A 111(35):E3689–E3698. https://doi.org/10.1073/pnas.1405801111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Sriraman SK, Kenny HA, Luther E, Torchilin V, Lengyel E (2016) Reversal of chemoresistance in ovarian cancer by co-delivery of a P-glycoprotein inhibitor and paclitaxel in a liposomal platform. Mol Cancer Ther 15(10):2282–2293. https://doi.org/10.1158/1535-7163.Mct-15-0986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benzerdjeb N, Garbar C, Camparo P, Sevestre H (2016) Digital holographic microscopy as screening tool for cervical cancer preliminary study. Cancer Cytopathol 124(8):573–580. https://doi.org/10.1002/cncy.21727

    Article  PubMed  Google Scholar 

  28. Anand A, Chhaniwal VK, Patel NR, Javidi B (2012) Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics J 4(5):1456–1464. https://doi.org/10.1109/jphot.2012.2210199

    Article  Google Scholar 

  29. Di Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P et al (2015) Holographic imaging of unlabelled sperm cells for semen analysis: a review. J Biophotonics 8(10):779–789. https://doi.org/10.1002/jbio.201400093

    Article  PubMed  Google Scholar 

  30. Lenz P, Bettenworth D, Krausewitz P, Bruckner M, Ketelhut S, von Bally G et al (2013) Digital holographic microscopy quantifies the degree of inflammation in experimental colitis. Integr Biol (Camb) 5(3):624–630. https://doi.org/10.1039/c2ib20227a

    Article  Google Scholar 

  31. <645042[1].pdf>

    Google Scholar 

  32. Kasprowicz R, Suman R, O’Toole P (2017) Characterising live cell behaviour: traditional label-free and quantitative phase imaging approaches. Int J Biochem Cell Biol 84:89–95. https://doi.org/10.1016/j.biocel.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218. https://doi.org/10.1146/annurev.pa.34.040194.001203

    Article  CAS  PubMed  Google Scholar 

  34. Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LF (1984) Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259(21):13560–13566

    CAS  PubMed  Google Scholar 

  35. <1204436.pdf>

    Google Scholar 

  36. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura V. Croft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Croft, L.V., Mulders, J.A., Richard, D.J., O’Byrne, K. (2019). Digital Holographic Imaging as a Method for Quantitative, Live Cell Imaging of Drug Response to Novel Targeted Cancer Therapies. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics