Skip to main content

Methods to Detect the Complex Behaviours in Drosophila

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The behaviour of an organism reflects physiological fitness and its response to the environment. Consequently, the behaviour redirects the functionality of the gene. Drosophila with its fully sequenced genome served as a model to screen the functionality of various genes using behavioural assay. Some of the behaviours reflect the functionality of a single gene or organ, whereas others reflect the coordinated action of multiple organs. Such behaviour which needs multimodal signalling is referred to as complex behaviour. The most common complex behaviour includes courtship and mating behaviour, grooming behaviour and aggressive behaviour. The courtship and mating behaviour is essential for the propagation of the species. Grooming helps to clean the surface of sensory organs from foreign particles. Aggressive behaviour helps in finding food and partner and protecting its territory. The current chapter summarizes the courtship-mating, grooming and aggressive behaviour in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CI:

Courtship index

CPG:

Central song pattern generator

Dsx:

Doublesex

FRU:

Fruitless

GR:

Gustatory receptor

GRN:

Gustatory receptor neuron

LPS:

Lipopolysaccharide

OD:

Optical density

ORN:

Olfactory receptor neuron

SEM:

Scanning electron microscope

SP:

Sex peptide

WEI:

Wing extension index

WVI:

Wing vibration index

References

  1. Higgins LA, Jones KM, Wayne ML (2005) Quantitative genetics of natural variation of behavior in Drosophila melanogaster: the possible role of the social environment on creating persistent patterns of group activity. Evolution 59(7):1529–1539

    Article  PubMed  Google Scholar 

  2. Mackay TF (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2(1):11

    Article  CAS  PubMed  Google Scholar 

  3. Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35(1):303–339

    Article  CAS  PubMed  Google Scholar 

  4. Anholt RR, Mackay TF (2004) Quantitative genetic analyses of complex behaviours in Drosophila. Nat Rev Genet 5(11):838

    Article  CAS  PubMed  Google Scholar 

  5. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  6. Markow TA, Hanson SJ (1981) Multivariate analysis of Drosophila courtship. Proc Natl Acad Sci 78(1):430–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohl J, Ostrovsky AD, Frechter S, Jefferis GS (2013) A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell 155(7):1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manning A (1967) The control of sexual receptivity in female Drosophila. Anim Behav 15(2–3):239–250

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci 100(17):9929–9933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in Drosophila males. Nat Rev Neurosci 14(10):681

    Article  CAS  PubMed  Google Scholar 

  11. Spieth HT (1974) Courtship behavior in Drosophila. Annu Rev Entomol 19(1):385–405

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe K, Toba G, Koganezawa M, Yamamoto D (2011) Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior. Behav Genet 41(5):746–753

    Article  PubMed  Google Scholar 

  13. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11(8):874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clyne JD, Miesenböck G (2008) Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133(2):354–363

    Article  CAS  PubMed  Google Scholar 

  15. Aranha MM, Vasconcelos ML (2018) Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 52:139–148

    Article  CAS  PubMed  Google Scholar 

  16. Yapici N, Kim Y-J, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451(7174):33

    Article  PubMed  Google Scholar 

  17. Kohatsu S, Yamamoto D (2015) Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nat Commun 6:6457

    Article  CAS  PubMed  Google Scholar 

  18. Shorey H, Bartell R (1970) Role of a volatile female sex pheromone in stimulating male courtship behaviour in Drosophila melanogaster. Anim Behav 18:159–164

    Article  CAS  PubMed  Google Scholar 

  19. Ewing AW (1964) The influence of wing area on the courtship behaviour of Drosophila melanogaster. Anim Behav 12(2–3):316–320

    Article  Google Scholar 

  20. Demir E, Dickson BJ (2005) Fruitless splicing specifies male courtship behavior in Drosophila. Cell 121(5):785–794

    Article  CAS  PubMed  Google Scholar 

  21. Connolly K, Cook R (1973) Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44:142–166

    Article  Google Scholar 

  22. Ejima A, Nakayama S, Aigaki T (2001) Phenotypic association of spontaneous ovulation and sexual receptivity in virgin females of Drosophila melanogaster mutants. Behav Genet 31(5):437–444

    Article  CAS  PubMed  Google Scholar 

  23. Villella A, Hall JC (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67–184

    Article  CAS  PubMed  Google Scholar 

  24. Lasbleiz C, Ferveur J-F, Everaerts C (2006) Courtship behaviour of Drosophila melanogaster revisited. Anim Behav 72(5):1001–1012

    Article  Google Scholar 

  25. Kubli E (2003) Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci CMLS 60(8):1689–1704

    Article  CAS  PubMed  Google Scholar 

  26. Ejima A, Griffith LC (2007) Measurement of courtship behavior in Drosophila melanogaster. Cold Spring Harb Protoc 2007(10):pdb. prot4847

    Article  Google Scholar 

  27. Connolly K, Burnet B, Sewell D (1969) Selective mating and eye pigmentation: an analysis of the visual component in the courtship behavior of Drosophila melanogaster. Evolution 23(4):548–559

    Article  PubMed  Google Scholar 

  28. Maimon G, Straw AD, Dickinson MH (2008) A simple vision-based algorithm for decision making in flying Drosophila. Curr Biol 18(6):464–470

    Article  CAS  PubMed  Google Scholar 

  29. Agrawal S, Safarik S, Dickinson MH (2014) The relative roles of vision and chemosensation in mate recognition of Drosophila. J Exp Biol 217:2796–2805. jeb. 105817

    Article  PubMed  Google Scholar 

  30. Ewing AW (1983) Functional aspects of Drosophila courtship. Biol Rev 58(2):275–292

    Article  Google Scholar 

  31. Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci 98(26):15336–15341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436(7049):395

    Article  CAS  PubMed  Google Scholar 

  33. Liimatainen J, Hoikkala A, Aspi J, Welbergen P (1992) Courtship in Drosophila montana: the effects of male auditory signals on the behaviour of flies. Anim Behav 43(1):35–48

    Article  Google Scholar 

  34. Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39(6):1019–1029

    Article  CAS  PubMed  Google Scholar 

  35. Ferveur J-F, Cobb M (2010) Behavioral and evolutionary roles of cuticular hydrocarbons in Diptera. Insect Hydrocarb Biol Biochem Chem Ecol 325–343

    Google Scholar 

  36. Coen P, Clemens J, Weinstein AJ, Pacheco DA, Deng Y, Murthy M (2014) Dynamic sensory cues shape song structure in Drosophila. Nature 507(7491):233

    Article  CAS  PubMed  Google Scholar 

  37. Clemens J, Coen P, Roemschied FA, Pereira TD, Mazumder D, Aldarondo DE, Pacheco DA, Murthy M (2018) Discovery of a new song mode in Drosophila reveals hidden structure in the sensory and neural drivers of behavior. Curr Biol 28(15):2400–2412. e2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB (2014) Abdominal-B neurons control Drosophila virgin female receptivity. Curr Biol 24(14):1584–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zwarts L, Magwire MM, Carbone MA, Versteven M, Herteleer L, Anholt RR, Callaerts P, Mackay TF (2011) Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci 108(41):17070–17075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  PubMed  Google Scholar 

  41. Benelli G, Desneux N, Romano D, Conte G, Messing RH, Canale A (2015) Contest experience enhances aggressive behaviour in a fly: when losers learn to win. Sci Rep 5:9347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sturtevant A (1915) Experiments on sex recognition and the problem of sexual selection in Drosoophilia. J Anim Behav 5(5):351

    Article  Google Scholar 

  43. Zhou C, Rao Y, Rao Y (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11(9):1059

    Article  CAS  PubMed  Google Scholar 

  44. Miczek KA, Fish EW, Joseph F, De Almeida RM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163(3–4):434–458

    Article  CAS  PubMed  Google Scholar 

  45. Baier A, Wittek B, Brembs B (2002) Drosophila as a new model organism for the neurobiology of aggression? J Exp Biol 205(9):1233–1240

    PubMed  Google Scholar 

  46. Narvaes R, Martins de Almeida RM (2014) Aggressive behavior and three neurotransmitters: dopamine, GABA, and serotonin—a review of the last 10 years. Psychol Neurosci 7(4):601

    Article  CAS  Google Scholar 

  47. Huser A, Eschment M, Güllü N, Collins KA, Böpple K, Pankevych L, Rolsing E, Thum AS (2017) Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 12(8):e0181865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Saudou F, Boschert U, Amlaiky N, Plassat J-L, Hen R (1992) A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. EMBO J 11(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL, Heisenberg M (2008) Octopamine in male aggression of Drosophila. Curr Biol 18(3):159–167

    Article  CAS  PubMed  Google Scholar 

  50. Versteven M, Broeck LV, Geurten B, Zwarts L, Decraecker L, Beelen M, Göpfert MC, Heinrich R, Callaerts P (2017) Hearing regulates Drosophila aggression. Proc Natl Acad Sci 114(8):1958–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhukovskaya M, Yanagawa A, Forschler B (2013) Grooming behavior as a mechanism of insect disease defense. Insects 4(4):609–630

    Article  PubMed  PubMed Central  Google Scholar 

  52. Szebenyi AL (1969) Cleaning behaviour in Drosophila melanogaster. Anim Behav 17(4):641–651

    Article  Google Scholar 

  53. Anselme P (2008) Abnormal patterns of displacement activities: a review and reinterpretation. Behav Process 79(1):48–58

    Article  Google Scholar 

  54. Zhukovskaya MI (2012) Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L. Chem Senses 37(5):421–429

    Article  CAS  PubMed  Google Scholar 

  55. Root-Bernstein M (2010) Displacement activities during the honeybee transition from waggle dance to foraging. Anim Behav 79(4):935–938

    Article  Google Scholar 

  56. Böröczky K, Wada-Katsumata A, Batchelor D, Zhukovskaya M, Schal C (2013) Insects groom their antennae to enhance olfactory acuity. Proc Natl Acad Sci 110(9):3615–3620

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rath W (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 30(2–3):97–110

    Article  Google Scholar 

  58. Basibuyuk HH, Quicke DL (1999) Grooming behaviours in the Hymenoptera (Insecta): potential phylogenetic significance. Zool J Linnean Soc 125(3):349–382

    Article  Google Scholar 

  59. Phillis RW, Bramlage AT, Wotus C, Whittaker A, Gramates LS, Seppala D, Farahanchi F, Caruccio P, Murphey R (1993) Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. Genetics 133(3):581–592

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Baracchi D, Mazza G, Turillazzi S (2012) From individual to collective immunity: the role of the venom as antimicrobial agent in the Stenogastrinae wasp societies. J Insect Physiol 58(1):188–193

    Article  CAS  PubMed  Google Scholar 

  61. Lusebrink I, Dettner K, Seifert K (2008) Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 95(8):751–755

    Article  CAS  PubMed  Google Scholar 

  62. Hughes WO, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond Ser B Biol Sci 269(1502):1811–1819

    Article  Google Scholar 

  63. Yang C-H, Belawat P, Hafen E, Jan LY, Jan Y-N (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319(5870):1679–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hampel S, Franconville R, Simpson JH, Seeds AM (2015) A neural command circuit for grooming movement control. Elife 4:e08758

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yanagawa A, Guigue A, Marion-Poll F (2014) Hygienic grooming is induced by contact chemicals in Drosophila melanogaster. Front Behav Neurosci 8:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sibley D, Elphick C, Dunning JB (2001) The Sibley guide to bird life & behavior, vol Sirsi. National Audubon Society. i9780679451235

    Google Scholar 

  67. Villella A, Ferri SL, Krystal JD, Hall JC (2005) Functional analysis of fruitless gene expression by transgenic manipulations of Drosophila courtship. Proc Natl Acad Sci 102(46):16550–16557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eberl DF, Duyk GM, Perrimon N (1997) A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci 94(26):14837–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Sumit Mukherjee for his help with Fig. 3. GD and SS are thankful to DST inspire for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahu, S., Dhar, G., Mishra, M. (2020). Methods to Detect the Complex Behaviours in Drosophila. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics