Skip to main content

Production and Purification of Functional Cryptosporidium Glycoproteins by Heterologous Expression in Toxoplasma gondii

  • Protocol
  • First Online:
Cryptosporidium

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2052))

Abstract

Development of an effective vaccine against cryptosporidiosis is a medical and veterinary priority. However, many putative Cryptosporidium vaccine candidates such as surface and apical complex antigens are posttranslationally modified with O- and N-linked glycans. This presents a significant challenge to understanding the functions of these antigens and the immune responses to them. Isolation of large amounts of native antigen from Cryptosporidium oocysts is expensive and is only feasible for C. parvum antigens. Here, we describe a method of producing recombinant, functional Cryptosporidium glycoprotein antigens in Toxoplasma gondii. These functional recombinant proteins can be used to investigate the role of glycotopes in Cryptosporidium immune responses and parasite–host cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggs MW, Stone AL, Yount PA, Langer RC, Arrowood MJ, Bentley DL (1997) Protective monoclonal antibody defines a circumsporozoite-like glycoprotein exoantigen of Cryptosporidium parvum sporozoites and merozoites. J Immunol 158(4):1787–1795

    CAS  PubMed  Google Scholar 

  2. Cevallos AM, Zhang X, Waldor MK, Jaison S, Zhou X, Tzipori S, Neutra MR, Ward HD (2000) Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun 68(7):4108–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perryman LE, Jasmer DP, Riggs MW, Bohnet SG, McGuire TC, Arrowood MJ (1996) A cloned gene of Cryptosporidium parvum encodes neutralization-sensitive epitopes. Mol Biochem Parasit 80(2):137–147

    Article  CAS  Google Scholar 

  4. Barnes DA, Bonnin A, Huang JX, Gousset L, Wu J, Gut J, Doyle P, Dubremetz JF, Ward H, Petersen C (1998) A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Mol Biochem Parasit 96(1–2):93–110

    Article  CAS  Google Scholar 

  5. Priest JW, Kwon JP, Arrowood MJ, Lammie PJ (2000) Cloning of the immunodominant 17-kDa antigen from Cryptosporidium parvum. Mol Biochem Parasit 106(2):261–271

    Article  CAS  Google Scholar 

  6. Paluszynski J, Monahan Z, Williams M, Lai O, Morris C, Burns P, O’Connor R (2014) Biochemical and functional characterization of CpMuc4, a Cryptosporidium surface antigen that binds to host epithelial cells. Mol Biochem Parasit 193(2):114–121. https://doi.org/10.1016/j.molbiopara.2014.03.005

    Article  CAS  Google Scholar 

  7. Cevallos AM, Bhat N, Verdon R, Hamer DH, Stein B, Tzipori S, Pereira ME, Keusch GT, Ward HD (2000) Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun 68(9):5167–5175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y, Cipriano MJ, Striepen B (2015) Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523(7561):477–480. https://doi.org/10.1038/nature14651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeCicco RePass MA, Chen Y, Lin Y, Zhou W, Kaplan DL, Ward HD (2017) Novel bioengineered three-dimensional human intestinal model for long-term infection of Cryptosporidium parvum. Infect Immun 85(3). https://doi.org/10.1128/IAI.00731-16

  10. Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, Sachs N, Boonekamp KE, Bowden G, Hendrickx APA, Willems RJL, Peters PJ, Riggs MW, O’Connor R, Clevers H (2018) Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiol 3(7):814–823. https://doi.org/10.1038/s41564-018-0177-8

    Article  CAS  Google Scholar 

  11. Morada M, Lee S, Gunther-Cummins L, Weiss LM, Widmer G, Tzipori S, Yarlett N (2016) Continuous culture of Cryptosporidium parvum using hollow fiber technology. Int J Parasitol 46(1):21–29. https://doi.org/10.1016/j.ijpara.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  12. O’Connor RM, Wanyiri JW, Wojczyk BS, Kim K, Ward H (2007) Stable expression of Cryptosporidium parvum glycoprotein gp40/15 in toxoplasma gondii. Mol Biochem Parasitol 152(2):149–158

    Article  PubMed  PubMed Central  Google Scholar 

  13. O'Connor RM, Kim K, Khan F, Ward H (2003) Expression of Cpgp40/15 in Toxoplasma gondii: a surrogate system for the study of Cryptosporidium glycoprotein antigens. Infect Immun 71:6027–6034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:27–63

    Article  CAS  PubMed  Google Scholar 

  15. Khan A, Grigg ME (2017) Toxoplasma gondii: laboratory maintenance and growth. Curr Protoc Microbiol 44:20C 21 21–20C 21 17. https://doi.org/10.1002/cpmc.26

    Article  Google Scholar 

  16. Meissner M, Brecht S, Bujard H, Soldati D (2001) Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii. Nucleic Acids Res 29(22):E115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta M. O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Driskell, I., O’Connor, R.M. (2020). Production and Purification of Functional Cryptosporidium Glycoproteins by Heterologous Expression in Toxoplasma gondii. In: Mead, J., Arrowood, M. (eds) Cryptosporidium. Methods in Molecular Biology, vol 2052. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9748-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9748-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9747-3

  • Online ISBN: 978-1-4939-9748-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics