Skip to main content

Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry

  • Protocol
  • First Online:
Book cover Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2051))

Abstract

Protein quantitation by mass spectrometry has always been a resourceful technique in protein discovery, and more recently it has leveraged the advent of clinical proteomics. A single mass spectrometry analysis experiment provides identification and quantitation of proteins as well as information on posttranslational modifications landscape. By contrast, protein array technologies are restricted to quantitation of targeted proteins and their modifications. Currently, there are an overwhelming number of quantitative mass spectrometry methods for protein and peptide quantitation. The aim here is to provide an overview of the most common mass spectrometry methods and algorithms used in quantitative proteomics and discuss the computational aspects to obtain reliable quantitative measures of proteins, peptides and their posttranslational modifications. The development of a pipeline using commercial or freely available software is one of the main challenges in data analysis of many experimental projects. Recent developments of R statistical programming language make it attractive to fully develop pipelines for quantitative proteomics. We discuss concepts of quantitative proteomics that together with current R packages can be used to build highly customizable pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3(10):1912–1919

    Article  CAS  Google Scholar 

  2. Karp NA, Lilley KS (2007) Design and analysis issues in quantitative proteomics studies. Proteomics 7(Suppl 1):42–50

    Article  Google Scholar 

  3. Lau KW, Jones AR, Swainston N, Siepen JA, Hubbard SJ (2007) Capture and analysis of quantitative proteomic data. Proteomics 7(16):2787–2799

    Article  CAS  Google Scholar 

  4. Matthiesen R (2007) Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 7(16):2815–2832. https://doi.org/10.1002/pmic.200700116

    Article  CAS  PubMed  Google Scholar 

  5. Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3:350–363

    Article  CAS  Google Scholar 

  6. Bronstrup M (2004) Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 1(4):503–512

    Article  Google Scholar 

  7. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  8. Mirzaei H, McBee JK, Watts J, Aebersold R (2008) Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics 7(4):813–823. https://doi.org/10.1074/mcp.M700495-MCP200. [pii]: M700495-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1(2):1029–1043. https://doi.org/10.1038/nprot.2006.129. [pii]: nprot.2006.129.

    Article  CAS  PubMed  Google Scholar 

  10. Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6(8):1416–1427. https://doi.org/10.1074/mcp.M600456-MCP200. [pii]: M600456-MCP200.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588

    Article  CAS  Google Scholar 

  12. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3(2):235–244

    Article  CAS  Google Scholar 

  13. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–273

    Article  CAS  Google Scholar 

  14. Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951

    Article  CAS  Google Scholar 

  15. Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5(2):112–120

    Article  CAS  Google Scholar 

  16. Shadforth IP, Dunkley TP, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145

    Article  Google Scholar 

  17. Horvatic A, Guillemin N, Kaab H, McKeegan D, O’Reilly E, Bain M, Kules J, Eckersall PD (2019) Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. J Proteome 192:64–77. https://doi.org/10.1016/j.jprot.2018.08.009

    Article  CAS  Google Scholar 

  18. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6(12):2139–2149. https://doi.org/10.1074/mcp.M700163-MCP200. [pii]: M700163-MCP200.

    Article  CAS  PubMed  Google Scholar 

  19. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126. https://doi.org/10.15252/msb.20178126

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matthiesen R, Azevedo L, Amorim A, Carvalho AS (2011) Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 11(4):604–619. https://doi.org/10.1002/pmic.201000404

    Article  CAS  PubMed  Google Scholar 

  21. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385. https://doi.org/10.1038/nmeth.1446. [pii]: nmeth.1446.

    Article  CAS  PubMed  Google Scholar 

  22. Matthiesen R (2006) Extracting monoisotopic single-charge peaks from liquid chromatography-electrospray ionization-mass spectrometry. Methods Mol Biol 367:37–48

    Google Scholar 

  23. Meija J, Caruso JA (2004) Deconvolution of isobaric interferences in mass spectra. J Am Soc Mass Spectrom 15(5):654–658

    Article  CAS  Google Scholar 

  24. Matthiesen R (2006) Virtual expert mass spectrometrist v3.0: an integrated tool for proteome analysis. Methods Mol Biol 367:121–138

    Google Scholar 

  25. MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal Chem 75(24):6912–6921

    Article  CAS  Google Scholar 

  26. Li XJ, Zhang H, Ranish JA, Aebersold R (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75(23):6648–6657

    Article  CAS  Google Scholar 

  27. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  28. Blagoev B, Mann M (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250

    Article  CAS  Google Scholar 

  29. Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23(5):617–621. https://doi.org/10.1038/nbt1086. [pii]: nbt1086.

    Article  CAS  PubMed  Google Scholar 

  30. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

    Article  CAS  Google Scholar 

  31. Yao X, Afonso C, Fenselau C (2003) Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2(2):147–152

    Article  CAS  Google Scholar 

  32. Mason CJ, Therneau TM, Eckel-Passow JE, Johnson KL, Oberg AL, Olson JE, Nair KS, Muddiman DC, Bergen HR 3rd (2007) A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters. Mol Cell Proteomics 6(2):305–318

    Article  CAS  Google Scholar 

  33. Eckel-Passow JE, Oberg AL, Therneau TM, Mason CJ, Mahoney DW, Johnson KL, Olson JE, Bergen HR 3rd (2006) Regression analysis for comparing protein samples with 16O/18O stable-isotope labeled mass spectrometry. Bioinformatics (Oxford, England) 22(22):2739–2745

    Article  CAS  Google Scholar 

  34. Ramos-Fernandez A, Lopez-Ferrer D, Vazquez J (2007) Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6(7):1274–1286

    Article  CAS  Google Scholar 

  35. Halligan BD, Slyper RY, Twigger SN, Hicks W, Olivier M, Greene AS (2005) ZoomQuant: an application for the quantitation of stable isotope labeled peptides. J Am Soc Mass Spectrom 16(3):302–306

    Article  CAS  Google Scholar 

  36. Coursey J, Schwab D, Dragoset R (2001) Atomic weights and isotopic compositions (version 2.3.1). National Institute of Standards and Technology, Gaithersburg, MD. Available: http://physics.nist.gov/Comp 2003, July 7.

    Google Scholar 

  37. Matthiesen R, Mutenda KE (2006) Introduction to proteomics. Methods Mol Biol 367:1–36

    Google Scholar 

  38. Snyder A (ed) (2001) Interpreting protein mass spectra. A comprehensive resource. Oxford University Press, Oxford

    Google Scholar 

  39. Mirgorodskaya O, Kozmin Y, Titov M, Körner R, Sönksen C, Roepstorff P (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom 14:1226–1232

    Article  CAS  Google Scholar 

  40. Ramos-Fernández A, López-Ferrer D, Vázquez J (2007) Improved method for differential expression Proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6:1274–1286

    Article  Google Scholar 

  41. Regnier FE, Julka S (2006) Primary amine coding as a path to comparative proteomics. Proteomics 6(14):3968–3979

    Article  CAS  Google Scholar 

  42. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74(15):3662–3669

    Article  CAS  Google Scholar 

  43. Zhang R, Regnier FE (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J Proteome Res 1(2):139–147

    Article  CAS  Google Scholar 

  44. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852

    Article  CAS  Google Scholar 

  45. Fu Q, Li L (2005) De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal Chem 77(23):7783–7795. https://doi.org/10.1021/ac051324e

    Article  CAS  PubMed  Google Scholar 

  46. Hsu JL, Huang SY, Chen SH (2006) Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 27:3652–3660

    Article  CAS  Google Scholar 

  47. Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8(22):4624–4632. https://doi.org/10.1002/pmic.200800297

    Article  CAS  PubMed  Google Scholar 

  48. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494. https://doi.org/10.1038/nprot.2009.21. [pii]: nprot.2009.21.

    Article  CAS  PubMed  Google Scholar 

  49. Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER (2003) Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase. J Am Chem Soc 125(45):13836–13849. https://doi.org/10.1021/ja036006g

    Article  CAS  PubMed  Google Scholar 

  50. Carvalho AS, Cuco CM, Lavareda C, Miguel F, Ventura M, Almeida S, Pinto P, de Abreu TT, Rodrigues LV, Seixas S, Barbara C, Azkargorta M, Elortza F, Semedo J, Field JK, Mota L, Matthiesen R (2017) Bronchoalveolar Lavage Proteomics in Patients with Suspected Lung Cancer. Sci Rep 7:42190. https://doi.org/10.1038/srep42190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4:2099–2108

    Article  CAS  Google Scholar 

  52. She YM, Rosu-Myles M, Walrond L, Cyr TD (2012) Quantification of protein isoforms in mesenchymal stem cells by reductive dimethylation of lysines in intact proteins. Proteomics 12(3):369–379. https://doi.org/10.1002/pmic.201100308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH (2005) Beyond quantitative proteomics: signal enhancement of the a(1) ion as a mass tag for peptide sequencing using dimethyl labeling. J Proteome Res 4:101–108

    Article  CAS  Google Scholar 

  54. Hsu JL, Chen SH, Li DT, Shi FK (2007) Enhanced a(1) fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J Proteome Res 6:2376–2383

    Article  CAS  Google Scholar 

  55. Aye TT, Low TY, Bjorlykke Y, Barsnes H, Heck AJ, Berven FS (2012) Use of stable isotope dimethyl labeling coupled to selected reaction monitoring to enhance throughput by multiplexing relative quantitation of targeted proteins. Anal Chem 84(11):4999–5006. https://doi.org/10.1021/ac300596r

    Article  CAS  PubMed  Google Scholar 

  56. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  57. Zeng D, Li S (2009) Improved CILAT reagents for quantitative proteomics. Bioorg Med Chem Lett 19(7):2059–2061. https://doi.org/10.1016/j.bmcl.2009.02.022. [pii]: S0960-894X(09)00156–5.

    Article  CAS  PubMed  Google Scholar 

  58. Carvalho AS, Ribeiro H, Voabil P, Penque D, Jensen ON, Molina H, Matthiesen R (2014) Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress. Mol Cell Proteomics 13(12):3294–3307. https://doi.org/10.1074/mcp.M113.034363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gatto L, Lilley KS (2012) MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28(2):288–289. https://doi.org/10.1093/bioinformatics/btr645

    Article  CAS  PubMed  Google Scholar 

  60. McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe RA, Blethrow JD, Gygi SP (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84(17):7469–7478. https://doi.org/10.1021/ac301572t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M (2012) High-resolution enabled TMT 8-plexing. Anal Chem 84(16):7188–7194. https://doi.org/10.1021/ac301553x

    Article  CAS  PubMed  Google Scholar 

  62. Shadforth I, Crowther D, Bessant C (2005) Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 5(16):4082–4095

    Article  CAS  Google Scholar 

  63. Laderas T, Bystrom C, McMillen D, Fan G, McWeeney S (2007) TandTRAQ: an open-source tool for integrated protein identification and quantitation. Bioinformatics (Oxford, England) 23(24):3394–3396

    Article  CAS  Google Scholar 

  64. Yu CY, Tsui YH, Yian YH, Sung TY, Hsu WL (2007) The Multi-Q web server for multiplexed protein quantitation. Nucleic Acids Res 35(Web Server issue):W707–W712

    Article  Google Scholar 

  65. Lin WT, Hung WN, Yian YH, Wu KP, Han CL, Chen YR, Chen YJ, Sung TY, Hsu WL (2006) Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5(9):2328–2338

    Article  CAS  Google Scholar 

  66. Breitwieser FP, Muller A, Dayon L, Kocher T, Hainard A, Pichler P, Schmidt-Erfurth U, Superti-Furga G, Sanchez JC, Mechtler K, Bennett KL, Colinge J (2011) General statistical modeling of data from protein relative expression isobaric tags. J Proteome Res 10(6):2758–2766. https://doi.org/10.1021/pr1012784

    Article  CAS  PubMed  Google Scholar 

  67. D’Ascenzo M, Choe L, Lee KH (2008) iTRAQPak: an R based analysis and visualization package for 8-plex isobaric protein expression data. Brief Funct Genomic Proteomic 7(2):127–135. https://doi.org/10.1093/bfgp/eln007

    Article  CAS  PubMed  Google Scholar 

  68. Wang P, Yang P, Yang JY (2012) OCAP: an open comprehensive analysis pipeline for iTRAQ. Bioinformatics 28(10):1404–1405. https://doi.org/10.1093/bioinformatics/bts150

    Article  CAS  PubMed  Google Scholar 

  69. Fischer M, Renard BY (2016) iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to improve protein quantification. Bioinformatics 32(7):1040–1047. https://doi.org/10.1093/bioinformatics/btv675

    Article  CAS  PubMed  Google Scholar 

  70. Blein-Nicolas M, Zivy M (2016) Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. Biochim Biophys Acta 1864(8):883–895. https://doi.org/10.1016/j.bbapap.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  71. O’Connell JD, Paulo JA, O’Brien JJ, Gygi SP (2018) Proteome-wide evaluation of two common protein quantification methods. J Proteome Res 17(5):1934–1942. https://doi.org/10.1021/acs.jproteome.8b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goeminne LJE, Gevaert K, Clement L (2018) Experimental design and data-analysis in label-free quantitative LC/MS proteomics: a tutorial with MSqRob. J Proteome 171:23–36. https://doi.org/10.1016/j.jprot.2017.04.004

    Article  CAS  Google Scholar 

  73. Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR, Vaisar T, Heinecke JW (2008) Spectral index for assessment of differential protein expression in shotgun proteomics. J Proteome Res 7(3):845–854. https://doi.org/10.1021/pr070271+

    Article  CAS  PubMed  Google Scholar 

  74. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272. https://doi.org/10.1074/mcp.M500061-MCP200. [pii]: M500061-MCP200.

    Article  CAS  PubMed  Google Scholar 

  75. Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, Wang R, Huang ST, Ferlanti ES, Saeed AI, Fleischmann RD, Peterson SN, Pieper R (2008) The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics 9:529. https://doi.org/10.1186/1471-2105-9-529. [pii]: 1471-2105-9-529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5(7):1314–1325. https://doi.org/10.1074/mcp.M600007-MCP200

    Article  CAS  PubMed  Google Scholar 

  77. Montoya A, Beltran L, Casado P, Rodriguez-Prados JC (2011) Cutillas PR characterization of a TiO(2) enrichment method for label-free quantitative phosphoproteomics. Methods 54(4):370–378. https://doi.org/10.1016/j.ymeth.2011.02.004. [pii]: S1046-2023(11)00039-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  79. Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang R, Aittokallio T, Schwikowski B (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8(4):650–672. https://doi.org/10.1002/pmic.200700791

    Article  CAS  PubMed  Google Scholar 

  80. Schulz-Trieglaff O, Machtejevas E, Reinert K, Schluter H, Thiemann J, Unger K (2009) Statistical quality assessment and outlier detection for liquid chromatography-mass spectrometry experiments. BioData Min 2(1):4. https://doi.org/10.1186/1756-0381-2-4. [pii]: 1756-0381-2-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matzke MM, Waters KM, Metz TO, Jacobs JM, Sims AC, Baric RS, Pounds JG, Webb-Robertson BJ (2011) Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics 27(20):2866–2872. https://doi.org/10.1093/bioinformatics/btr479. [pii]: btr479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, Hesse AM, Coute Y, Ferro M, Bruley C, Burger T (2017) DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics 33(1):135–136. https://doi.org/10.1093/bioinformatics/btw580

    Article  CAS  Google Scholar 

  83. Lazar C, Gatto L, Ferro M, Bruley C, Burger T (2016) Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res 15(4):1116–1125. https://doi.org/10.1021/acs.jproteome.5b00981

    Article  CAS  PubMed  Google Scholar 

  84. Webb-Robertson BJ, Wiberg HK, Matzke MM, Brown JN, Wang J, McDermott JE, Smith RD, Rodland KD, Metz TO, Pounds JG, Waters KM (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res 14(5):1993–2001. https://doi.org/10.1021/pr501138h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  86. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 33487–32742

    Google Scholar 

  87. Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJ, Smith RD, Lipton MS (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5(2):277–286. https://doi.org/10.1021/pr050300l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Albert J (2007) Baysian computation with R. Springer, New York, NY

    Book  Google Scholar 

  89. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wehofsky M, Hoffmann R, Hubert M, Spengler B (2001) Isotopic deconvolution of matrix-assisted laser desorption/ionization mass spectra for substances-class specific analysis of complex samples. Eur J Mass Spectrom 7:39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.M. is supported by Fundação para a Ciência e a Tecnologia (CEEC position, 2019–2025 investigator). iNOVA4Health—UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and cofunded by FEDER under the PT2020 Partnership Agreement is acknowledged. A.S.C. is supported by Fundação para a Ciência e a Tecnologia (BPD/85569/2012). This work is also funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the projects number PTDC/BTM-TEC/30087/2017 and PTDC/BTM-TEC/30088/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sofia Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matthiesen, R., Carvalho, A.S. (2020). Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 2051. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9744-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9744-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9743-5

  • Online ISBN: 978-1-4939-9744-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics