Skip to main content

3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2050))

Abstract

Delivery of macromolecular nucleotides into the living cells holds a great promise for the development of new therapeutics. However, its abilities for adoptive immunotherapy, cell reprogramming, and primary cell transfection have been long-term hindered by the lack of a system that can locally deliver engineered therapeutic nucleotides (e.g., plasmids, siRNAs, miRNAs) without causing any side effects. In this chapter, the performance of a novel 3D nanoelectroporation system (3D NEP) is highlighted in three scenarios—adoptive immunotherapy, cell reprogramming, and adult mouse primary cardiomyocyte transfection. Detailed protocols were given to introduce the 3D NEP system assembly, as well as their applications in (1) natural killer (NK) cells transfection by delivery of chimeric antigen receptor (CAR) plasmids; (2) mouse embryonic fibroblasts transfection with OSKM factors; and (3) miR-29b molecular beacon (BMs) delivery into primary cardiomyocytes for interrogating the side effect of miR-29b-assisted treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrahari V, Agrahari V, Mitra AK (2016) Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther Deliv 7(4):257–278. https://doi.org/10.4155/tde-2015-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee YJ, Erazo-Oliveras A, Pellois JP (2010) Delivery of macromolecules into live cells by simple co-incubation with a peptide. Chembiochem 11(3):325–330. https://doi.org/10.1002/cbic.200900527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qian L, Li D, Ma L, He T, Qi F, Shen J, Lu XA (2016) The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing. Cell Immunol 304-305:49–54. https://doi.org/10.1016/j.cellimm.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  4. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, He X, Devine SM, Zhang X, Caligiuri MA, Hofmeister CC, Yu J (2014) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28(4):917–927. https://doi.org/10.1038/leu.2013.279

    Article  CAS  PubMed  Google Scholar 

  5. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  7. Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4):508–525. https://doi.org/10.1016/j.cell.2010.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB (2014) Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2:67. https://doi.org/10.3389/fcell.2014.00067

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. https://doi.org/10.1016/j.stem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Huang XR, Wei LH, Chung ACK, Yu CM, Lan HY (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol Ther 22(5):974–985

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. P Natl Acad Sci USA 105(35):13027–13032. https://doi.org/10.1073/pnas.0805038105

    Article  Google Scholar 

  12. Chang L, Bertani P, Gallego-Perez D, Yang Z, Chen F, Chiang C, Malkoc V, Kuang T, Gao K, Lee LJ, Lu W (2016) 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale 8(1):243–252. https://doi.org/10.1039/c5nr03187g

    Article  CAS  PubMed  Google Scholar 

  13. Chang L, Gallego-Perez D, Zhao X, Bertani P, Yang Z, Chiang CL, Malkoc V, Shi J, Sen CK, Odonnell L, Yu J, Lu W, Lee LJ (2015) Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab Chip 15(15):3147–3153. https://doi.org/10.1039/c5lc00553a

    Article  CAS  PubMed  Google Scholar 

  14. Chang L, Gallego-Perez D, Chiang CL, Bertani P, Kuang T, Sheng Y, Chen F, Chen Z, Shi J, Yang H, Huang X, Malkoc V, Lu W, Lee LJ (2016) Controllable large-scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform. Small 12(43):5971–5980. https://doi.org/10.1002/smll.201601465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqian Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, L., Chitrakar, C., Nouri, M. (2020). 3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. In: Li, S., Chang, L., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 2050. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9740-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9740-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9739-8

  • Online ISBN: 978-1-4939-9740-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics