Skip to main content

Automated Planar Patch-Clamp Recording of P2X Receptors

  • Protocol
  • First Online:
Purinergic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

P2X receptors are a structurally and functionally distinctive family of ligand-gated ion channels that play important roles in mediating extracellular adenosine 5′-triphosphate (ATP) signaling in diverse physiological and pathophysiological processes. For several decades, the “manual” patch-clamp technique was regarded as the gold standard assay for investigating ion channel properties. More recently, breakthroughs in the development of automated patch-clamp technologies are enabling the study of ion channels, with much greater throughput capacities. These automated platforms, of which there are many, generate consistent, reliable, high-fidelity data. This chapter demonstrates the versatility of one of these technologies for ligand-gated ion channels, with a particular emphasis on protocols that address some of the issues of receptor desensitization that are commonly associated with P2X receptor-mediated currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  Google Scholar 

  2. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  Google Scholar 

  3. Browne LE, Jiang LH, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31:229–237

    Article  CAS  Google Scholar 

  4. Bo X, Jiang LH, Wilson HL, Kim M, Burnstock G, Surprenant A, North RA (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416

    Article  CAS  Google Scholar 

  5. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X. receptor channels. Pharmacol Rev 63:641–683

    Article  CAS  Google Scholar 

  6. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519

    Article  CAS  Google Scholar 

  7. Jiang LH (2012) P2X receptor-mediated ATP purinergic signaling in health and disease. Cell Health Cytoskel 4:83–101

    Article  CAS  Google Scholar 

  8. Robinson LE, Murrell-Lagnado RD (2013) The trafficking and targeting of P2X receptors. Front Cell Neurosci 7:1–6

    Google Scholar 

  9. Murrell-Lagnado RD (2018) A role for P2X4 receptors in lysosome function. J Gen Physiol 150:185–187

    Article  CAS  Google Scholar 

  10. Wei L, Mortadza SAS, Yan J, Zhang L, Wang L, Yin Y, Li C, Chalon S, Emond P, Belzung C, Li D, Lu C, Roger S, Jiang LH (2018) ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 87:192–205

    Article  CAS  Google Scholar 

  11. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83:759–769

    Article  CAS  Google Scholar 

  12. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Eur J Phys 375:219–228

    Article  CAS  Google Scholar 

  13. Hamill O, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Phys 391:85–100

    Article  CAS  Google Scholar 

  14. Bell DC, Dallas ML (2018) Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br J Pharmacol 175:2312–2321

    Article  CAS  Google Scholar 

  15. Sadovnick AD, Gu BJ, Traboulsee AL, Bernales CQ, Encarnacion M, Yee IM, Criscuoli MG, Huan X, Ou A, Milligan CJ, Petrou S, Wiley JS, Vilarino-Guell C (2017) Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis. Hum Mutat 38:736–744

    Article  CAS  Google Scholar 

  16. Milligan CJ, Li J, Sukumar P, Majeed Y, Dallas ML, English A, Emery P, Porter KE, Smith AM, McFadzean I, Beccano-Kelly D, Bahnasi Y, Cheong A, Naylor J, Zeng F, Liu X, Gamper N, Jiang L-H, Pearson HA, Peers C, Robertson B, Beech DJ (2009) Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nat Protoc 4:244–255

    Article  CAS  Google Scholar 

  17. Milligan CJ, Möller C (2013) Automated planar patch-clamp. Methods Mol Biol 998:171–187

    Article  CAS  Google Scholar 

  18. Veselovskii NS, Fedulova SA (1986) Effects of substituting barium for calcium ions during research into inward currents in mammalian neurons. Neurophysiology 18:227–231

    Article  Google Scholar 

  19. Ferreira G, Yi J, Rios E, Shirokov R (1997) Ion-dependent inactivation of barium current through L-type calcium channels. J Gen Physiol 109:449–461

    Article  CAS  Google Scholar 

  20. Kostyuk PG, Krishtal OA, Pidoplichko VI (1975) Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 23:691–693

    Article  Google Scholar 

  21. Becker N, Stoelzle S, Göpel S, Guinot D, Mumm P, Haarmann C, Malan D, Bohlen H, Kossolov E, Kettenhofen R, George M, Fertig N, Brüggemann A (2013) Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system. J Pharmacol Toxicol Methods 68:82–87

    Article  CAS  Google Scholar 

  22. Richards K, Milligan CJ, Richardson RJ, Jancovski N, Grunnet M, Jacobson LH, Undheim EAB, Mobli M, Chow CY, Herzig V, Csoti A, Panyi G, Reid CA, King GF, Petrou S (2018) A selective NaV1.1 activator rescues Dravet Syndrome mice from seizures and premature death. Proc Natl Acad Sci U S A 115:E8077–E8085

    Article  CAS  Google Scholar 

  23. Petty SJ, Milligan CJ, Todaro M, Richards KL, Kularathna PK, Pagel CN, French CR, Hill-Yardin EL, O'Brien TJ, Wark JD, Mackie EJ, Petrou S (2016) The antiepileptic medications carbamazepine and phenytoin inhibit native sodium currents in murine osteoblasts. Epilepsia 57:1398–1405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Dr. Sonja Stoelzle and Dr. Alison Obergrussberger (Nanion Technologies GmbH) for P2X2/3R data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol J. Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Milligan, C.J., Jiang, LH. (2020). Automated Planar Patch-Clamp Recording of P2X Receptors. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics