Skip to main content

Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines

  • Protocol
  • First Online:
Multiphoton Microscopy

Part of the book series: Neuromethods ((NM,volume 148))

Abstract

The activity-dependent structural remodeling of dendritic spines in response to sensory experience is vital for the dynamic regulation of neuronal circuit connectivity that supports complex behavior. Here, we discuss how the two-photon glutamate uncaging technique can be applied to study the mechanisms that drive activity-dependent structural and functional plasticity in individual dendritic spines. Our goal is to provide the reader with the key background for this technique and to present guidelines, practical details, and potential caveats associated with its implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  2. Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 3:653–659

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi-Takagi A, Yagishita S, Nakamura M et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Segal M (2017) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem 138:3–9

    Article  PubMed  Google Scholar 

  5. Stein IS, Zito K (2018) Dendritic spine elimination: molecular mechanisms and implications. Neuroscientist. https://doi.org/10.1177/1073858418769644

  6. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuzaki M, Honkura N, Ellis-Davies GC et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okamoto K, Nagai T, Miyawaki A et al (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    Article  CAS  PubMed  Google Scholar 

  10. Penzes P, Cahill ME, Jones KA et al (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan JH, Forbush B 3rd, Hoffman JF (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–1935

    Article  CAS  PubMed  Google Scholar 

  12. Engels J, Schlaeger EJ (1977) Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J Med Chem 20:907–911

    Article  CAS  PubMed  Google Scholar 

  13. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90:7661–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wieboldt R, Gee KR, Niu L et al (1994) Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci U S A 91:8752–8756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilcox M, Viola RW, Johnson KW et al (1990) Synthesis of photolabile precursors of amino acid neurotransmitters. J Org Chem 55:1585–1589

    Article  CAS  Google Scholar 

  16. Aujard I, Benbrahim C, Gouget M et al (2006) O-nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chemistry 12:6865–6879

    Article  CAS  PubMed  Google Scholar 

  17. Ellis-Davies GC, Matsuzaki M, Paukert M et al (2007) 4-Carboxymethoxy-5,7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27:6601–6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiovini B, Turi GF, Katona G et al (2014) Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron 82:908–924

    Article  CAS  PubMed  Google Scholar 

  19. Fedoryak OD, Sul JY, Haydon PG et al (2005) Synthesis of a caged glutamate for efficient one- and two-photon photorelease on living cells. Chem Commun (Camb) 29:3664–3666

    Article  CAS  Google Scholar 

  20. Fino E, Araya R, Peterka DS et al (2009) RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits. https://doi.org/10.3389/neuro.04.002.2009

  21. Olson JP, Kwon HB, Takasaki KT et al (2013) Optically selective two-photon uncaging of glutamate at 900 nm. J Am Chem Soc 135:5954–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gug S, Charon S, Specht A et al (2008) Photolabile glutamate protecting group with high one- and two-photon uncaging efficiencies. Chembiochem 9:1303–1307

    Article  CAS  PubMed  Google Scholar 

  23. Specht A, Bolze F, Donato L et al (2012) The donor-acceptor biphenyl platform: a versatile chromophore for the engineering of highly efficient two-photon sensitive photoremovable protecting groups. Photochem Photobiol Sci 11:578–586

    Article  CAS  PubMed  Google Scholar 

  24. Canepari M, Nelson L, Papageorgiou G et al (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Meth 112:29–42

    Google Scholar 

  25. Palma-Cerda F, Auger C, Crawford DJ et al (2012) New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups. Neuropharmacology 63:624–634

    Article  CAS  PubMed  Google Scholar 

  26. Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kantevari S, Passlick S, Kwon HB et al (2016) Development of anionically decorated caged neurotransmitters: in vitro comparison of 7-Nitroindolinyl- and 2-(p-Phenyl-o-nitrophenyl)propyl-based photochemical probes. Chembiochem 17:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuzaki M, Hayama T, Kasai H et al (2010) Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue. Nat Chem Biol 6:255–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lutz C, Otis TS, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits. https://doi.org/10.3389/neuro.04.005.2008

  31. Kantevari S, Matsuzaki M, Kanemoto Y et al (2010) Two-color, two-photon uncaging of glutamate and GABA. Nat Methods 7:123–125

    Article  CAS  PubMed  Google Scholar 

  32. Zito K, Scheuss V, Knott G et al (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hill TC, Zito K (2013) LTP-induced long-term stabilization of individual nascent dendritic spines. J Neurosci 33:678–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh WC, Hill TC, Zito K (2013) Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc Natl Acad Sci U S A 110:E305–E312

    Article  CAS  PubMed  Google Scholar 

  35. Stein IS, Gray JA, Zito K (2015) Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J Neurosci 35:12303–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamilton AM, Lambert JT, Parajuli LK et al (2017) A dual role for the RhoGEF Ephexin5 in regulation of dendritic spine outgrowth. Mol Cell Neurosci 80:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamilton AM, Oh WC, Vega-Ramirez H et al (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yasuda R, Nimchinsky EA, Scheuss V et al (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:pl5

    PubMed  Google Scholar 

  41. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Meth 37:173–182

    Google Scholar 

  42. De Simoni A, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Prot 1:1439–1445

    Google Scholar 

  43. Gogolla N, Galimberti I, DePaola V et al (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Prot 1:1165–1171

    Google Scholar 

  44. Opitz-Araya X, Barria A (2011) Organotypic hippocampal slice cultures. J Vis Exp. https://doi.org/10.3791/2462

  45. Woods G, Zito K (2008) Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp. https://doi.org/10.3791/675

  46. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450:1195–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lein PJ, Barnhart CD, Pessah IN (2011) Acute hippocampal slice preparation and hippocampal slice cultures. Methods Mol Biol 758:115–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  49. Sjulson L, Cassataro D, DasGupta S et al (2016) Cell-specific targeting of genetically encoded tools for neuroscience. Annu Rev Genet 50:571–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  51. Bedbrook CN, Deverman BE, Gradinaru V (2018) Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci 41:323–348

    Article  CAS  PubMed  Google Scholar 

  52. Eilers J, Konnerth A (2009) Dye loading with patch pipettes. Cold Spring Harb Protoc 2009:pdb prot5201

    Article  PubMed  Google Scholar 

  53. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454:675–688

    Article  CAS  PubMed  Google Scholar 

  54. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  CAS  PubMed  Google Scholar 

  55. Suter BA, O'Connor T, Iyer V et al (2010) Ephus: multipurpose data acquisition software for neuroscience experiments. Front Neural Circuits. https://doi.org/10.3389/fncir.2010.00100

  56. Raghavachari S, Lisman JE (2004) Properties of quantal transmission at CA1 synapses. J Neurophysiol 92:2456–2467

    Article  CAS  PubMed  Google Scholar 

  57. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260

    Article  CAS  PubMed  Google Scholar 

  58. Zhang YP, Holbro N, Oertner TG (2008) Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII. Proc Natl Acad Sci U S A 105:12039–12044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh WC, Parajuli LK, Zito K (2015) Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep 10:162–169

    Article  CAS  PubMed  Google Scholar 

  60. Bosch M, Castro J, Saneyoshi T et al (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee SJ, Escobedo-Lozoya Y, Szatmari EM et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kato K, Clifford DB, Zorumski CF (1993) Long-term potentiation during whole-cell recording in rat hippocampal slices. Neuroscience 53:39–47

    Article  CAS  PubMed  Google Scholar 

  63. Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–180

    Article  CAS  PubMed  Google Scholar 

  64. Holtmaat AJ, Trachtenberg JT, Wilbrecht L et al (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  65. Hedrick NG, Yasuda R (2017) Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr Opin Neurobiol 45:193–201

    Article  CAS  PubMed  Google Scholar 

  66. Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhai S, Ark ED, Parra-Bueno P et al (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants R01 NS062736 and U01 NS103571 from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Zito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stein, I.S., Hill, T.C., Oh, W.C., Parajuli, L.K., Zito, K. (2019). Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines. In: Hartveit, E. (eds) Multiphoton Microscopy. Neuromethods, vol 148. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9702-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9702-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9701-5

  • Online ISBN: 978-1-4939-9702-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics