Skip to main content

Proximity Ligation Assay Image Analysis Protocol: Addressing Receptor-Receptor Interactions

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

Proximity ligation assay (PLA) is an antibody-based method that permits studying protein-protein interactions with high specificity and sensitivity. In brief, when a pair of specific antibodies is in close proximity, the complementary DNA strands they bear engage into a rolling circle amplification and generate, in situ, a single fluorescent signal, which indicates the presence of a protein-protein interaction. Proper image analysis methods are needed to provide accurate quantitative assessment of the obtained fluorescent signals, namely, PLA data. In this chapter, we outline basic aspects of image analysis (including software, data import, image processing functions, and analytical tools) that can be used to extract PLA data from confocal microscopy images using ImageJ. A step-by-step protocol to determine and quantify PLA fluorescence signals is included. Overall, the accurate capture and subsequent analysis of PLA confocal images constitutes a crucial step to properly interpret data obtained with this powerful experimental approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pin JP, Neubig R, Bouvier M et al (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59:5–13. https://doi.org/10.1124/pr.59.1.5

    Article  CAS  PubMed  Google Scholar 

  2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. https://doi.org/10.1038/nrd2199

    Article  CAS  PubMed  Google Scholar 

  3. Schiöth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101. https://doi.org/10.1016/j.ygcen.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  4. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767. https://doi.org/10.1146/annurev.biochem.75.103004.142743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ciruela F, Vilardaga J-P, Fernández-Dueñas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415

    Article  CAS  Google Scholar 

  6. Fernández-Dueñas V, Taura JJ, Cottet M et al (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63. https://doi.org/10.1242/dmm.018143

    Article  CAS  PubMed  Google Scholar 

  7. Image J downloading. http://imagej.nih.gov/ij/download.html

  8. Image J installation. http://imagej.nih.gov/ij/docs/install

  9. Taura J, Fernández-Dueñas V, Ciruela F (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17.17.1–17.17.16. https://doi.org/10.1002/0471143030.cb1717s67

    Article  Google Scholar 

  10. Matamales M, Bertran-Gonzalez J, Salomon L et al (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One 4:e4770

    Article  Google Scholar 

  11. de Oliveira PA, Dalton JAR, López-Cano M et al (2017) Angiotensin II type 1/adenosine A2A receptor oligomers: a novel target for tardive dyskinesia. Sci Rep 7:1857. https://doi.org/10.1038/s41598-017-02037-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by MINECO/ISCIII (SAF2017-87349-R and PIE14/00034), the Catalan government (2017 SGR 1604), Fundació la Marató de TV3 (Grant 20152031), and FWO (SBO-140028) to FC. We are grateful to Manel Bosch and Benjamin Torrejón from the Scientific and Technological Centers (CCiTUB) for providing microscopy expertise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor Fernández-Dueñas or Francisco Ciruela .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Image 1

(ZIP 11249 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Cano, M., Fernández-Dueñas, V., Ciruela, F. (2019). Proximity Ligation Assay Image Analysis Protocol: Addressing Receptor-Receptor Interactions. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics