Skip to main content

NMR Studies of G-Quadruplex Structures and G-Quadruplex-Interactive Compounds

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

G-quadruplexes are noncanonical, four-stranded nucleic acid secondary structures formed in sequences containing consecutive runs of guanines. These G-quadruplex structures have been found to form in nucleic acid regions of biological significance, including human telomeres, gene promoters, and untranslated regions of mRNA. Thus, they are considered attractive therapeutic targets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for understanding the structures of G-quadruplexes and their interactions with small molecules under physiologically relevant conditions. Here, we present the NMR methodology used in our research group for the study of DNA G-quadruplex structures in physiologically relevant solution and their ligand interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang DZ, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2(4):619–646

    Article  CAS  PubMed  Google Scholar 

  2. Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344(6265):410–414

    Article  CAS  PubMed  Google Scholar 

  3. Hud NV, Plavec J (2006) The role of cations in determining quadruplex structure and stability. In: Neidle S (ed) Quadruplex nucleic acids. Royal Society of Chemistry, RSC Publishing, Cambridge, pp 100–130

    Google Scholar 

  4. Neidle S, Parkinson G (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1(5):383–393

    Article  CAS  PubMed  Google Scholar 

  5. Punchihewa C, Yang DZ (2009) Therapeutic targets and drugs-G-quadruplex inhibitors. In: Hiyama K (ed) Telomeres and telomerase in cancer. Springer, NJ, USA, pp 251–280

    Chapter  Google Scholar 

  6. Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90(8):1149–1171. https://doi.org/10.1016/j.biochi.2008.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Onel B, Lin C, Yang D (2014) DNA G-quadruplex and its potential as anticancer drug target. Sci China Chem 57(12):1605–1614

    Article  CAS  Google Scholar 

  8. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neidle S (2016) Quadruplex nucleic acids as novel therapeutic targets. J Med Chem 59(13):5987–6011

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Yang DZ (2012) Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. Curr Protoc Nucl Acid Chem 50:17.15.11–17.15.17

    Google Scholar 

  11. Sun DY, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40(14):2113–2116

    Article  CAS  PubMed  Google Scholar 

  12. Brooks TA, Hurley LH (2009) The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 9(12):849–861

    Article  CAS  PubMed  Google Scholar 

  13. Wheelhouse RT, Han FX, Sun D, Hurley LH (1998) The interaction of telomerase inhibitory porphyrines with G-quadruplex DNA. Proc Am Assoc Cancer Res 39:430

    Google Scholar 

  14. Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K, Hayakawa Y, Seto H (2001) Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 123(6):1262–1263

    Article  CAS  PubMed  Google Scholar 

  15. Local A, Zhang H, Benbatoul KD, Folger P, Sheng X, Tsai C-Y, Howell SB, Rice WG (2018) APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression and induces DNA damage in acute myeloid leukemia cells. Mol Cancer Ther 17(6):1177–1186. https://doi.org/10.1158/1535-7163.MCT-17-1209

    Article  CAS  PubMed  Google Scholar 

  16. Gunaratnam M, Collie GW, Reszka AP, Todd AK, Parkinson GN, Neidle S (2018) A naphthalene diimide G-quadruplex ligand inhibits cell growth and down-regulates BCL-2 expression in an imatinib-resistant gastrointestinal cancer cell line. Bioorg Med Chem 26(11):2958–2964

    Article  CAS  PubMed  Google Scholar 

  17. Dai JX, Punchihewa C, Mistry P, Ooi AT, Yang DZ (2004) Novel DNA Bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug. J Biol Chem 279(50):46096

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Patel DJ (1993) Solution structure of the human Telomeric repeat D[AG(3)(T(2)AG(3))3] G-Tetraplex. Structure 1(4):263–282

    Article  CAS  PubMed  Google Scholar 

  19. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880

    Article  CAS  PubMed  Google Scholar 

  20. Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34(9):2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai JX, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang DZ (2007) Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res 35(7):2440–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tu A (2000) Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J Biomol NMR 16(2):175–178

    Article  Google Scholar 

  23. Greene KL, Wang Y, Live D (1995) Influence of the glycosidic torsion angle on 13 C and 15 N shifts in guanosine nucleotides: investigations of G-tetrad models with alternating syn and anti bases. J Biomol NMR 5(4):333–338

    Article  CAS  PubMed  Google Scholar 

  24. Goddard TD, Kneller DG (2004). University of California, San Francisco

    Google Scholar 

  25. Brünger AT (1993) Version 3.1: a system for X-ray crystallography and NMR. Yale University Press, Neww Haven, CT, USA. Version 31: A system for X-ray crystallography and NMR Yale University Press, Neww Haven, CT, USA

    Google Scholar 

  26. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold. J Am Chem Soc 128(30):9963–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lazzeretti P (2000) Ring currents. Prog Nucl Magn Reson Spectrosc 36(1):1–88

    Article  CAS  Google Scholar 

  28. Ambrus A, Chen D, Dai JX, Jones RA, Yang DZ (2005) Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. Implications for g-quadruplex stabilization. Biochemist 44(6):2048–2058

    Article  CAS  Google Scholar 

  29. Marušič M, Šket P, Bauer L, Viglasky V, Plavec J (2012) Solution-state structure of an intramolecular G-quadruplex with propeller, diagonal and edgewise loops. Nucleic Acids Res 40(14):6946–6956

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (R01CA122952 (DY), R01CA177585 (DY), and P30CA023168 (Purdue Center for Cancer Research)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danzhou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, C., Dickerhoff, J., Yang, D. (2019). NMR Studies of G-Quadruplex Structures and G-Quadruplex-Interactive Compounds. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics