Skip to main content

Mass Spectroscopic Study of G-Quadruplex

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

Mass spectrometry (MS) is an analytical tool complimentary for being sensitive, accurate, and versatile in its application, such as the identification of multistranded nucleic acid assemblies, including G-quadruplex. More specifically, electrospray ionization mass spectrometry (ESI-MS) has been successfully applied to probe various G-quadruplex formations and G-quadruplex-ligand interactions. The benefit of the ESI process is that the noncovalent interactions, which typically stabilize the multistranded motifs of G-quadruplex in solution, are preserved in the gas phase. Here we use ESI-MS to describe the structural characterization of G-quadruplex structures found in three G-rich sequences, as well as the ligand binding. Detailed structural information of G-quadruplexes and their ligand-bound complexes (such as the cation/ligand binding stoichiometry, and the number of strands and G-quartets) can be obtained from a single spectrum using this ESI-MS-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schürch S (2016) Characterization of nucleic acids by tandem mass spectrometry - the second decade (2004–2013): from DNA to RNA and modified sequences. Mass Spectrom Rev 35:483–523

    Article  Google Scholar 

  2. Yuan G, Zhang Q, Zhou J et al (2011) Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. Mass Spectrom Rev 30:1121–1142

    Article  CAS  Google Scholar 

  3. Connor AC, Frederick KA, Morgan EJ et al (2006) Insulin capture by an insulin-linked polymorphic region G-quadruplex DNA oligonucleotides. J Am Chem Soc 128:4986–4991

    Article  CAS  Google Scholar 

  4. Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88:4451–4459

    Article  CAS  Google Scholar 

  5. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  6. Goodlett DR, Camp DG, Hardin CC et al (1993) Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry. Biol Mass Spectrom 22:181–183

    Article  CAS  Google Scholar 

  7. Tanaka K, Waki H, Ido Y, Akita S et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  8. Marchand A, Gabelica V (2014) Native electrospray mass spectrometry of DNA G-quadruplexes in potassium solution. J Am Soc Mass Spectrom 25:1146–1154

    Article  CAS  Google Scholar 

  9. Li H, Liu Y, Lin S et al (2009) Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene. Chem Eur J 15:2445–2452

    Article  CAS  Google Scholar 

  10. Qian C, Fu H, Kovalchik K et al (2017) Specific binding constant and stoichiometry determination in free solution by mass spectrometry and capillary electrophoresis frontal analysis. Anal Chem 89:9483–9490

    Article  CAS  Google Scholar 

  11. Rosu F, De Pauw E, Gabelica V et al (2008) Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 90:1074–1087

    Article  CAS  Google Scholar 

  12. Li H, Yuan G, Du D (2008) Investigation of formation, recognition, stabilization, and conversion of dimeric G-quadruplexes of HIV-1 integrase inhibitors by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:550–559

    Article  CAS  Google Scholar 

  13. Zhou J, Yuan G, Liu J et al (2007) Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chem Eur J 13:945–949

    Article  CAS  Google Scholar 

  14. Li H, Hai J, Zhou J et al (2016) Exploration of binding affinity and selectivity of brucine with G-quadruplex in the c-myb proto-oncogene by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 30:407–414

    Article  CAS  Google Scholar 

  15. Marchand A, Gabelica V (2014) Native electrospray mass spectrum of DNA G-quadruplexes in potassium solution. J Am Soc Mass Spectrom 25:1146–1154

    Article  CAS  Google Scholar 

  16. Scalabrin M, Palumbo M, Richter SN (2017) Highly improved electrospray ionization-mass spectrometry detection of G-quadruplex-folded oligonucleotides and their complexes with small molecules. Anal Chem 89:8632–8637

    Article  CAS  Google Scholar 

  17. Balthasart F, Plavec J, Gabelica V (2013) Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species? J Am Soc Mass Spectrom 24:1–8

    Article  CAS  Google Scholar 

  18. Wan KX, Shibue T, Gross ML (2000) Noncovalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry. J Am Chem Soc 122:300–307

    Article  CAS  Google Scholar 

  19. Vorlyckova M, Bednarova K, Kypr J (2006) Ethanol is a better inducer of DNA guanine tetraplexes than potassium cations. Biopolymers 82:253–260

    Article  Google Scholar 

  20. Lecours MJ, Marchand A, Anwar A et al (2017) What stoichiometries determined bymass spectrometry reveal about the ligand binding mode to G-quadruplex nucleic acids. Biochim Biophys Acta 1861:1353–1361

    Article  CAS  Google Scholar 

  21. Marchand A, Granzhan A, Iida K (2015) Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes. J Am Chem Soc 137:750–756

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, H. (2019). Mass Spectroscopic Study of G-Quadruplex. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics